期刊文献+

信息熵和信息瓶颈算法在图像聚类中的应用

Application of information entropy and information bottleneck algorithm in image clustering
下载PDF
导出
摘要 提出基于信息熵特征选择和信息瓶颈算法的图像聚类算法,首先提取图像的Gabor小波纹理特征和灰度共生矩阵纹理特征,然后采用信息熵特征选择方法进行特征降维;图像聚类方法很多,其中较为典型的k-means聚类算法,但它过分依赖距离函数和聚类中心的选择,采用信息瓶颈算法对图像进行聚类,信息瓶颈算法不需要定义距离函数,它考虑了样本与特征的关系,不仅压缩了样本的信息,同时又考虑保留特征信息。实验结果表明,提出的方法具有良好的聚类效果。 An image clustering algorithm based on information entropy feature selecting and information bottleneck algorithm is proposed, the Gabor wavelet features and gray-level co-occurrence matrix texture features of each image are extracted, and information entropy is used to select feature and reduce the feature dimensionality.A wide variety of approaches are pro- posed for image clustering, among them,k-means is a classic one,because of k-means clustering algorithms is over-reliance on the performance of distance function and cluster centers, information bottleneck algorithm for image clustering is proposed. Information bottleneck algorithm does not require the definition of distance function,which takes into accountthe relation- ship between the characteristics and the sample,it compress the sample information and at the same time retain the character- istics information.The experimental results show that the proposed clustering method has a good clustering performance.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第34期187-190,共4页 Computer Engineering and Applications
基金 广东省科技计划项目工业攻关项目资助课题(No.2007B010200036)
关键词 信息瓶颈算法 Gabor小波纹理 灰度共生矩阵 信息熵 图像聚类 information bottleneck algorithm Gabor wavelet texture gray-level co-occurrence matrix information entropy image clustering
  • 相关文献

参考文献9

二级参考文献30

  • 1韩彦芳,施鹏飞.基于蚁群算法的图像分割方法[J].计算机工程与应用,2004,40(18):5-7. 被引量:38
  • 2刘韬,王耀才,王致杰.一种基于人工免疫系统的聚类算法[J].计算机工程与设计,2004,25(11):2051-2053. 被引量:14
  • 3PICAROUGNE F, AZZAG H, GUINOT C. On data clustering with a flock of artificial agents [ C ]//Proceeding of the 16th International Conference on Tools with Artificial Intelligence. Boca Raton,USA,2004 被引量:1
  • 4DORIGO M, BONABEAU E, THERAULAZ G. Ant algorithms and stigmergy[ J]. Future Generation Computer System ,2000,16:851-871. 被引量:1
  • 5DORIGO M, DICARO G, GAMBARDELLA L M. Ant algorithms and stigmergy [ J ]. Future Generation Computer System, 2000, 16(8) :851-871. 被引量:1
  • 6DPROGP M, GAMBARDELLA L M. Ant colonies for the traveling salesman problem [ J ]. Biosystem, 1997 (43) : 73- 81. 被引量:1
  • 7DENEUBOURG J L, GOSS S, FRANKS N, et al. The dynamics of collective sorting: robot-like ants and antlike robots [ C ]//Proceedings of the 1 st International Conference on Simulation of Adaptive Behavior: From Animals to Animals. Paris, 1991:356-363. 被引量:1
  • 8LUMER E, FAIETA B. Diversity and adaptation in populations of clustering ants [ C ]//Proceedings of the Third International Conference on Simulation of Adaptive Behavior:From Animals to Animats. Cambridge, USA, 1994: 501- 508. 被引量:1
  • 9AZZAG H, MONMARCHE N, SLIMANE M, et al. Ant-Tree : a new model for clustering with artificial ants [ C ]// IEEE Congress on Evolutionary Computation. Canberra, Australia, 2003 : 2642-2647. 被引量:1
  • 10AZZAG H, VENTURINI G, OLIVER A, GUINOT C. A hierarchical ant based clustering algorithm and its use in three real-world applications [ J]. European Journal or Operational Research,2007 (179) : 906-922. 被引量:1

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部