期刊文献+

运动想象脑电信号识别研究 被引量:1

Identification of motor imagery EEG signal
下载PDF
导出
摘要 通过对运动想象脑电信号的分类,对受试者进行身份识别。采用一种盲源分离算法——二阶盲辨识对运动想象脑电信号进行处理,提高运动想象脑电信号的信噪比,进而采用Fisher距离对处理后的信号进行特征提取,最后采用BP神经网络对特征集进行分类,从而实现对受试者的身份识别。对3位受试者的4类运动想象脑电信号分别进行了分类识别,结果显示,4类运动想象脑电信号的识别率均达到80%左右,其中最高的是想象舌动脑电信号,其识别率达到88.1%,这在类似研究中属于较高的水平。 Subjects are identified by classifying motor imagery EEG signal.Second-Order Blind Identification(SOBI),a Blind Source Separation(BSS) algorithm is applied to preprocess EEG data for higher signal-to-noise ratio.Subsequently,Fisher distance is used to extract features.Finally,classification of extracted features is performed by back-propagation neural networks. Four types motor imagery EEG of three subjects is classified respectively.The results show that the average classification accuracy achieves over 80%,and the highest is 88.1% on tongue movement imagery EEG.
作者 肖丹 胡剑锋
出处 《计算机工程与应用》 CSCD 北大核心 2010年第33期169-171,190,共4页 Computer Engineering and Applications
基金 江西省教育厅青年科学基金项目(No.GJJ09622)
关键词 身份识别 二阶盲辨识 运动想象 脑电 person identification second-order blind identification motor imagery Electroencephalo gram(EEG)
  • 相关文献

参考文献20

  • 1Jain A K.Biometrics:A tool for information security[J].IEEE Transactions on Information Forensics and Security,2006,1(2):125-143. 被引量:1
  • 2Ioannidis D,Tzovaras D,Damousis I G,et al.Gait recognition using compact feature extraction transforms and depth information[J].IEEE Transactions on Information Forensics and Security,2007,2(3). 被引量:1
  • 3Ruffmi G.ENOBIO-First tests of a dry electrophysiology electrode using Carbon Nanotubes[C] //Proceedings of IEEE EMBS' 06,2006:1826-1829. 被引量:1
  • 4Mohammadi G.Person identification by using AR model for EEG signals[C] //Proceedings of 9th International Conference on Bioengineering Technology,2006. 被引量:1
  • 5Poulos M,Rangoussi M,Chrissikopoulos V,et al.Person identification based on parametric processing of the EEG[C] //Proccedings of the 6th IEEE International Conference on Electronics,Circuits,and Systems,1999:283-286. 被引量:1
  • 6Marcel S,Mill J.Person authentication using brainwaves(EEG)and maximum a posteriori model adaptation[R].IDIAP Research Report,2005:81-85. 被引量:1
  • 7Poulos M.Person identification from the EEG using nonlinear signal classification[J].Methods of Information in Medicine,2002,41:64-75. 被引量:1
  • 8Paranjpe g B,Mahovsky J,Benedicenti L,et al.The electroencephalogram as a biometric[C] //Proceedings of Canadian Conference on Electrical and Computer Engineering,2001:1363-1366. 被引量:1
  • 9Biel L,Pettersson O,Philipson L,et al.ECG analysis:A new approach in human identification[J].IEEE Trans on Instrumentation and Measurement,2001,50(3):808-812. 被引量:1
  • 10Palaniappan R,Mandic D EEEG based biometric framework for automatic identity verification[J].The Journal of VLSI Signal Processing,2007,49(2):243-250. 被引量:1

二级参考文献43

共引文献10

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部