期刊文献+

基于RGB直方图的运动目标检测算法

Moving Objects Detection Algorithm Based on RGB Histogram
下载PDF
导出
摘要 在基于计算机视觉的交通监控系统中,运动目标的检测是一个基础而又关键的问题,背景减除法是其中一个比较经典和常用的方法。提出了一种基于RGB直方图的运动目标检测算法,利用图像序列在RGB颜色空间中R、G、B三个分量的变化特点,并根据三个分量的统计直方图构建背景图像,并对背景进行自适应更新;在此基础上利用背景减除法提取运动目标。实验结果表明,该算法能很好地构建背景,实时、完整地分割运动目标。 Moving objects detection is a basic and critical problem in traffic monitoring system based on computer vision.Background subtraction is one of the more classic and widely used methods.This paper presents an algorithm for moving objects detection based on the RGB histogram.The background is reconstructed using the characteristics of the three histograms of R,G,B components in image sequences.Then the fore-ground objects are obtained in RGB color space and the background will be updated.Experimental results show that the algorithm can accurately reconstruct the background and obtain the moving objects perfectly.
作者 陈颖 赵勋杰
出处 《微计算机信息》 2010年第32期199-201,共3页 Control & Automation
基金 基金申请人:赵勋杰 项目名称:基于强化学习的视频鲁棒传输模型与算法研究 基金颁发部门:江苏省高校自然科学基金(BK2009116)
关键词 背景减除 背景构建 背景更新 RGB直方图 运动目标检测 Background subtraction Background reconstruction Background updating RGB histogram Moving objects detection
  • 相关文献

参考文献10

  • 1Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. On PAMI, 1995,17 (8):814- 820. 被引量:1
  • 2G Sasa, S Loncaric. Spatio-temporal image segmentation using optical flow and clustering algorithm [C]. First Int'l Work-shop on Image and signal Processing and Analysis [C].Pula, Croatia, 2000.63-68. 被引量:1
  • 3Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. On Circuits and systems for Video Technology, 1998, 8(5):525-538. 被引量:1
  • 4Jong Bae Kim, Hang Joon Kim. Efficient region-based motion Segmentation for a video monitoring system [J]. Pattern Recognition Letters, 2003, 24(1-3): 113-128. 被引量:1
  • 5Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence(UAI). San Francisco, 1997. 被引量:1
  • 6P W Power, J A Schoonees. Understanding background mixture models for foreground segmentation [C]. In proceedings of Image and Vision Computing, Aukland New Zealand, 2003.267-271. 被引量:1
  • 7Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and pattern Recognition, Vol 2. 1999. 246-252. 被引量:1
  • 8Gloyer B, Aghajan HK, Siu KY, Kailath T. Video-Based free- way monitoring system using recursive vehicle tracking. In: Proe. of the IS&T-SPIE Symp. on Electronic Image and Video Processing, Vol 2421. 1995. 173-180. 被引量:1
  • 9侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 10王志刚,石剑飞.一种基于遗传算法的彩色图像增强方法[J].微计算机信息,2008,24(36):283-285. 被引量:4

二级参考文献32

  • 1王宝彬,唐健,高奂文.用遗传-神经网络方法进行图像分割的研究[J].沈阳理工大学学报,2005,24(3):26-30. 被引量:4
  • 2李雪峰,李灵锋,刘芳.基于遗传算法和Otsu理论的图像阈值自动选取[J].信息技术,2006,30(8):52-55. 被引量:12
  • 3狄岚,须文波,林意.基于改进型脉冲耦合神经网络的图像增强[J].微计算机信息,2007,23(02X):262-263. 被引量:5
  • 4Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203. 被引量:1
  • 5Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. on PAMI, 1995,17(8):814-820. 被引量:1
  • 6Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation. Signal Processing, 1998,66(2):219-232. 被引量:1
  • 7Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):525-538. 被引量:1
  • 8Jolly MPD, Lakshmanan S, Jain AK. Vehicle segmentation and classification using deformable templates. IEEE Trans. on PAMI,1996,18(3):293-308. 被引量:1
  • 9Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filter. In: Proc. of the Int'l Conf. on Recent Advances in Mechatronics, ICRAM'95. UNESCO Chair on Mechatronics, 1995. 193-199. 被引量:1
  • 10Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI). San Francisco, 1997. 被引量:1

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部