期刊文献+

改进的基于白化滤波器的降晰函数尺寸估计方法 被引量:5

Improved method of blur support size identification based on the whiten filter
下载PDF
导出
摘要 给出了一种改进的降晰函数尺寸估计方法,它能为图像盲复原提供重要的先验信息,增强复原结果的可靠性。该算法首先由AR模型导出白化滤波器,然后对降质图像白化后的结果进行两种操作,以保证算法在低信噪比下的可行性:一是利用AR模型误差在边缘区域与平滑区域的差异,通过边缘提取与膨胀操作实现有效区域的快速提取;二是对有效区域通过平滑滤波进行噪声项的有效抑制。最后,对滤波后的有效区域进行相关值计算,依据取得最小值时的位移与降晰函数尺寸之间的关系估计降晰函数的尺寸。该方法经仿真实验验证:在低信噪比时,较改进前的方法能给出可靠的尺寸估计。 An improved method of blur support size identification,which can provide the significant prior information for obtaining high-quality restored image in blind image restoration,was proposed.The method constructed a whiten filter derived from image AR model,and two measures were taken on the whiten image to ensure the feasibility of the method.One was to take advantage of the difference and obtain valid regions through edge detection and dilating operation,which was caused by the distribution of AR model error between the edge regions and the even regions.The other was to smooth the valid regions for suppressing the noise.Finally,the correlation values of smoothed valid regions were calculated,when the minimum was acquired,the blur support size could be estimated according to the relationship of the shift distance and the blur support size.The experimental results show that the method can estimate the more accurate blur support size in the low SNR condition compared with the original method.
作者 赵剡 张春晓
出处 《红外与激光工程》 EI CSCD 北大核心 2010年第5期896-901,共6页 Infrared and Laser Engineering
基金 航空科学基金资助项目(20080112001)
关键词 降晰函数尺寸估计 图像盲复原 AR模型 白化滤波 相关运算 Blur support size identification Image blind restoration AR model Whiten filter Correlation calculation
  • 相关文献

参考文献8

  • 1OMRI S, OREN H. Blind restoration of atmospherically degraded images by automatic best step-edge detection [J]. Pattern Recognition Letters, 2007, 28: 2094-2103. 被引量:1
  • 2CHAN T F, WONG C K. Convergence of the alternating minimization algorithm for blind deconvolution [J]. Linear Algebra and its Applications, 2000, 316: 259-285. 被引量:1
  • 3YITZHAKY Y, KOPEIKA N S. Identification of blur parameters from motion blurred images [J]. CVGIP: Graphical Models and Image Processing, 1997, 59(5): 310-320. 被引量:1
  • 4CHEN L, YAP Kim-Hui. Identification of blur support size in blind image deconvolution[J]. IEEE, ICICS-PCM, 2003: 503-507. 被引量:1
  • 5CHEN L, YAP Kim-Hui.Efficient discrete spatial techniques for blur support identification in blind image deconvolution[J].IEEE Transactions on signal processing, 2006, 54(4): 1557-1562. 被引量:1
  • 6KAUFMAN H, TEKALP A M. Survey of estimation techniques in image restoration [J]. IEEE Control Systems, 1991(11): 16-24. 被引量:1
  • 7YOU Yu-Li, KAVEH M A. Regularization approach to joint blur identification an image restoration [J].IEEE Transactions on image processing, 1996, 5(3): 416-428. 被引量:1
  • 8ZHENG Hongwei, HELLWICH O. An edge-driven total variation approach to image deblurring and denoising [C]//Proceedings of the First International Conference on Innovative Computing, Information and Control, 2006: 705-710. 被引量:1

同被引文献32

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部