期刊文献+

约束阻尼悬臂梁瞬态响应近似解析解与实验分析 被引量:3

Approximate Analytical Solutions and Experimental Analysis of Transient Response of Constrained Damping Cantilever Beam
下载PDF
导出
摘要 利用弹性悬臂梁模态叠加构造出约束阻尼悬臂梁的振动模态,基于Lagrange方程推导出了约束阻尼悬臂梁的控制方程,求解了在集中力突然卸载的情况下约束阻尼悬臂梁的动力响应.计算并测试了一系列铝合金约束阻尼悬臂梁模型的振动频率和瞬态响应,分析了阻尼层材料参数对铝合金约束悬臂梁瞬态响应时间的影响.采用了解析法及实验法两种方法,结果表明,所采用的方法是可靠的. Vibration mode of constrained damping cantilever was built up according to elastic cantilever beam mode superposition.Then the control equation of constrained damping cantilever beam was derived by using Lagrange's equation.Dynamic response of the constrained damping cantilever beam was obtained according to the principle of virtual work,when the concentrated force was suddenly unloaded.Frequencies and transient response of a series of constrained damping cantilever beam were calculated and tested.The influence of parameters of the damping layer on the response time was analyzed.Resolution and experimental approach are considered.The results show that this method is reliable.
出处 《应用数学和力学》 CSCD 北大核心 2010年第11期1287-1296,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10572150) 海军工程大学自然科学基金项目(HGDQNJJ008)的资助
关键词 约束阻尼 悬臂梁 瞬态响应 LAGRANGE方程 模态叠加 constrained damping cantilever beam transient response Lagrange's equation modes superposition
  • 相关文献

参考文献9

  • 1Nashif A, Jones D, Henderson J. Vibration Damping [ M ]. New York: John Wiley & Sons, 1985. 被引量:1
  • 2Mead D J. Passive Vibration Control[ M]. Chichester:Jotm Wiley & Sons, 1998. 被引量:1
  • 3Jones D I G. Handbook of Viscoelastic Vibration Damping [ M 1. Chichester: John Wiley & Sons, 2001. 被引量:1
  • 4Kerwin J E M. Damping of flexural waves by a constrained viscoelastic layer [ J ]. Journal of the Acoustical Society of America, 1959, 31(7 ) :952-952. 被引量:1
  • 5Mead D J, Markus S. The forced vibration of a three-layer damped sandwich beam with arbitrary boundary conditions [ J]. Journal of Sound and Vibration, 1969, 10 (2) : 163-175. 被引量:1
  • 6Yan M J, Dowell E H. Governing equations of vibrating constrained-layer damping sandwich plates and beams[J]. Journal of Applied Mechanics, 1972, 94: 1041-1047. 被引量:1
  • 7Ravi S S A, Kundra T K, Nakra B C. Response reanalysis of damped beams using eigen-parameter perturbation[J]. Journal of Sound and Vibration, 1995, 179: 399-412. 被引量:1
  • 8Baber T T, Maddox R A, Orozco C E. Finite element model for harmonically excited viscoelastic sandwich beams [ J ]. Computers and Structures, 1998, 66 ( 1 ) : 105-113. 被引量:1
  • 9Zheng H, Cai C, Tan X M. Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams [ J ]. Computers and Structures, 2004, 82 (29/30) :2493-2507. 被引量:1

同被引文献19

  • 1邢誉峰,乔元松,诸德超,孙国江.ELASTIC IMPACT ON FINITE TIMOSHENKO BEAM[J].Acta Mechanica Sinica,2002,18(3):252-263. 被引量:5
  • 2Hong Liang ZHAO,Kang Sheng LIU,Chun Guo ZHANG.Stability for the Timoshenko Beam System with Local Kelvin-Voigt Damping[J].Acta Mathematica Sinica,English Series,2005,21(3):655-666. 被引量:3
  • 3J·R·赖特,J·E·库珀,崔尔杰(译).飞机气动弹性力学及载荷导论.上海:上海交通大学出版社,2010. 被引量:1
  • 4Mead D J,Markus S.The forced vibration of a three-layer,damped sandwich beam with arbitrary boundary conditions.Journal of Sound and Vibration,1969,10 (2):163 ~ 175. 被引量:1
  • 5Gabriel A.Oyibo.Unified panel flutter theory with viscous damping effects.AIAA Journal,1983,21 (5):767 ~ 773. 被引量:1
  • 6Tang S J,Lumsdaine A.Analysis of constrained damping Layers,including normal-strain effects.AIAA Journal,2008,46(12):2998 ~ 3011. 被引量:1
  • 7Fei L,Mohan D.Vibration analysis of a multiple-layered viscoelastic structure using the biot damping model.AIAA Journal,2010,48(3):624 ~634. 被引量:1
  • 8Langthjem M A,Sugiyama Y.Dynamic stability of columns subjected to follower loads:a survey.Journal of Sound and Vibration,2000,238:809 ~ 851. 被引量:1
  • 9Bolotin V V,Zhinzher N I.Effects of damping on stability of elastic systems subjected to nonconservative forces.International Journal of Solids and Structures,1969,5:965 ~989. 被引量:1
  • 10Herrmann G,Jong I C.On the destabilizing effect of damping in nonconservative systems.Journal of Applied Mechanics,1965,32:592 ~ 597. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部