期刊文献+

一种高效混合属性离群检测算法 被引量:2

Efficient Outlier Detection Algorithm for Mixed Attributes
下载PDF
导出
摘要 离群检测是数据挖掘领域的一个重要内容,它为分析各种海量、复杂、含有噪声的数据提供了新的方法.对离群簇进行了定义并据此提出一种离群检测方法,该方法增量式地对原始数据集进行聚类,在得到的簇中寻找离群簇.根据提出的簇间差异性度量,新方法可处理混合属性数据集.同时探讨了参数取值.基于人工数据集和真实数据集上的实验表明,新方法检测离群点具有精度高、速度快的优点,适用于大规模数据集. Outlier detection is an important branch in data mining field. It provides new methods for analyzing all kinds of massive, complex data with noise. In this paper, an outlier detection algorithm is presented by introducing and discussing the concept of outlier cluster. The algorithm firstly partitions the dataset into several clusters by the incremental clustering approach. Outliers are then detected from the cluster set. Moreover, by introducing inter-cluster dissimilarity measure, the proposed algorithm gains a good performance on the mixed data. At the same time the parameter values are discussed. The experimental results on the synthetic and real-life datasets show our approach outperform the existing methods on identifying meaningful and interesting outliers.
作者 苏晓珂 兰洋
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第11期2282-2286,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60673191 10871040)资助 河南省教育厅自然科学基础研究计划项目(2010A520033)资助
关键词 离群检测 混合属性 离群簇 outlier detection mixed attributes abnormal cluster
  • 相关文献

参考文献1

二级参考文献9

  • 1Harkins S,He H,Willams G J, Baster R A. Outlier detection using replicator neural networks[C]. In:Proc. of the 4^th Int. Conf. on Data Warehousing and Knowledge Discovery, Aix-en-Provence France,2002:170-180. 被引量:1
  • 2Guha S,Rastogi R,Shim K. ROCK:A robust clustering algorithm for categorical attributes[C].In:Proc. of the 15th ICDE,Sydney Australia, 1999,512-521. 被引量:1
  • 3Merz C J, Merphy P. UCI repository of machine learning databases[EB/OL]. URL: http://www.ics.uci.edu/ mlearn/ MLRRepository.html,1996. 被引量:1
  • 4Eskin E,Arnold A,Prerau M,Portnoy L, Stolfo S. A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data[C]. In:In BarbaraDand Jajodia S(editors), Applications of Data Mining in Computer Securuty, Kluwer,2002. 被引量:1
  • 5Knorr E M, Ng R T.Algorithms for mining distance-based outliers in large datasets[C]. In:Proc. 24th Int. Conf. On Very Large Data Bases,New York, NY, 1998:392-403. 被引量:1
  • 6Shenyi-Yi Jiang,Qing-Hua Li,Ken-Li Li,Hui Wang,Zhong-Luo Meng.GLOF:a new approach for mining local outlier[C]. Int. Conf. Mach. Learn. Cybern, 2003,11: 157-162. 被引量:1
  • 7He Zeng-you, Xu Xiao-fei, Deng Sheng-chun. Discovering cluster-based local outliers[J]. Pattern Recognition Letters,2003,24(9-10):1651-1660. 被引量:1
  • 8Leonid Portnoy, Eleazar Eskin and Salvatore J. Stolfo.Intrusion detection with unlabeled data using clustering[C].In:Proc of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001). Philadelphia, PA, 2001. 被引量:1
  • 9何增有,徐晓飞,邓胜春.Squeezer:An Efficient Algorithm for Clustering Categorical Data[J].Journal of Computer Science & Technology,2002,17(5):611-624. 被引量:32

共引文献6

同被引文献28

  • 1蒋盛益,李庆华,赵延喜.一种两阶段异常检测方法[J].小型微型计算机系统,2005,26(7):1237-1240. 被引量:7
  • 2周晓云,孙志挥,张柏礼,杨宜东.高维类别属性数据流离群点快速检测算法[J].软件学报,2007,18(4):933-942. 被引量:21
  • 3蒋盛益,姜灵敏.一种高效异常检测方法[J].计算机工程,2007,33(7):166-168. 被引量:7
  • 4MUTHUKRISHNAN S,SHAH R,VETTER J S. Mining deviants in time series data stream[A].Los Alamitos.CA:IEEE Computer Society Press,2004.41-50. 被引量:1
  • 5ANGIULLI F,FASSETTI F. Detecting distance-based outliers in streams of data[A].New York:ACM,2007.811-820. 被引量:1
  • 6POKRAJAC D,LAZAREVIC A,LATECKI L J. Incremental local outlier detection for data streams[A].IEEE,2007.504-515. 被引量:1
  • 7ZHU Xingquan,WU Xindong,YANG Ying. Effective classification of noisy data streams with attribute oriented dynamic classifier selection[J].Knowledge and Information Systems,2006,(03):339-363. 被引量:1
  • 8LI Peipei,HU Xuegang,LIANG Qianhui. Concept drifting detection on noisy streaming data in random ensemble decision trees[A].Berlin,Germany,2009.236-250. 被引量:1
  • 9CHAN P K,MAHONEY M V,ARSHAD M H. A machine learning approach to anomaly detection[M].Melbourne:Florida Institute of Technology,2003.1-13. 被引量:1
  • 10DAS K,SCHNEIDER J G. Detecting anomalous records in categorical datasets[A].New York:ACM,2007.220-229. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部