摘要
柔性铰链具有体积小、无机械摩擦、无间隙、运动平稳无需润滑等特点,被广泛应用于多种仪器仪表中,获得了极高的精度和稳定性.柔性铰链设计的关键是柔度的计算.本文基于矩阵论、能量法、卡氏第二定理和微积分等知识推导出了双轴直圆柔性铰链设计的柔度计算公式;利用Visual C++6.0编制了其计算软件,通过修改几何参数,可以直观地看到用解析法所求得的各个柔度,便于双轴直圆柔性铰链几何参数的反复修改设计;运用有限元ANSYS11.0分析方法对计算公式进行了验证,结果表明本文推导的双轴直圆柔性铰链的柔度计算公式是正确的,可以用于实际双轴直圆柔性铰链的设计计算.
Flexible hinges are small in size,have no mechanical friction,no gap,no need for lubrication while offering smooth movement,and have been widely used in many instruments with unprecedented precision and stability.The calculation of flexibility is a critical part in flexible hinge design.This paper presented the compliance equations for biaxial right circular flexible hinges by utilizing the matrix theory,energy method,Castigliano's displacement theorem,and calculus.The calculation software was drawn up by VisualC++6.0,we could directly observe each of flexibility elements obtained by the analytic method by revising the biaxial right circular flexible hinge's geometric parameters,which facilitated being able to repeatedly revise the design of geometric parameters.The analytical model predictions were confirmed by the method of finite element software ANSYS11.0.The results showed that the flexibility calculation formulas for biaxial right circular flexible hinge were correct,and could be used in the design of biaxial right circular flexible hinges.
出处
《应用基础与工程科学学报》
EI
CSCD
2010年第5期838-846,共9页
Journal of Basic Science and Engineering
基金
National Natural Science Foundation of China (Project No.50875248)
关键词
柔性铰链
双轴直圆柔性铰链
卡氏第二定理
有限元
微积分
flexible hinge
biaxial right circular flexible hinge
Castigliano's displacement theorem
finite element
calculus