摘要
A series of bi A-SPAES(Ds=0.4)/phosphotungstic acid(PWA/bi A-SPAES)composite membranes with various contents of PWA were prepared and characterized by FT-IR.Scanning electron microscopy(SEM)images indicated the PWA were well dispersed within polymer matrix.These composite membranes were evaluated for proton exchange membranes(PEM)in direct methanol fuel cell(DMFC).These membranes showed good thermal stability.It was found that the water uptake of these membranes increased with the increase of the PWA content in the hybrid membranes.Meanwhile,the introduction of inorganic particles increased both the proton conductivity and the methanol permeability.The proton conductivities of composite membranes were increased from 0.017 S/cm to 0.045 S/cm at 20 ℃ and from 0.054 S/cm to 0.093 S/cm at 100 ℃ with the increase of PWA content from 0 to 50 %.Especially,all the methanol diffusion coefficients(4.20×10-8-1.05×10-7cm2/s)of bi A-SPAES/PWA hybrid membranes are much lower than that of Nafion 117 membrane(2.1×10-6 cm2/s).Bi A-SPAES/PWA hybrid membranes were therefore proposed as candidates of material for PEM in DMFC.
A series of bi A-SPAES(Ds=0.4)/phosphotungstic acid(PWA/bi A-SPAES)composite membranes with various contents of PWA were prepared and characterized by FT-IR.Scanning electron microscopy(SEM)images indicated the PWA were well dispersed within polymer matrix.These composite membranes were evaluated for proton exchange membranes(PEM)in direct methanol fuel cell(DMFC).These membranes showed good thermal stability.It was found that the water uptake of these membranes increased with the increase of the PWA content in the hybrid membranes.Meanwhile,the introduction of inorganic particles increased both the proton conductivity and the methanol permeability.The proton conductivities of composite membranes were increased from 0.017 S/cm to 0.045 S/cm at 20 ℃ and from 0.054 S/cm to 0.093 S/cm at 100 ℃ with the increase of PWA content from 0 to 50 %.Especially,all the methanol diffusion coefficients(4.20×10-8-1.05×10-7cm2/s)of bi A-SPAES/PWA hybrid membranes are much lower than that of Nafion 117 membrane(2.1×10-6 cm2/s).Bi A-SPAES/PWA hybrid membranes were therefore proposed as candidates of material for PEM in DMFC.
基金
Sponsored by the National Creative Research Group and the National Natural Science Foundation of China(Grant No.50821002)