期刊文献+

基于IWT和FCM的曲线矢量数据压缩方法

Method of Curve Vector Data Compression Based on IWT and FCM
下载PDF
导出
摘要 矢量数据压缩对于GIS数据的存储、网络传输以及在移动设备中的使用都具有重要意义。在此通过对曲线矢量数据特点的分析,提出基于整数小波变换的矢量数据压缩方法。压缩方案包括3个主要流程:矢量数据整型化。曲线矢量数据具有相邻坐标点间坐标值大小差别不大的特点,将坐标点间的差值转换为整型的偏移量,用偏移量表示矢量数据的坐标点,利用整数小波变换处理偏移量序列。实验表明,偏移量序列经过整数小波变换得到的小波系数序列在空间分布上更加集中,适合使用高效的编码压缩方法;对变换后的小波系数进行编码压缩。在此使用模糊C均值聚类字典法编码实现了曲线矢量数据的有损编码。通过实验和其他压缩算法结果的对比,该方法具有压缩比较高,失真小的特点。 The vector data compression has great significance in GIS data storage, network transmission and its application in mobile devices. A compression method based on the integer wavelet transform (IWT) and fuzzy C means (FCM) is pro- posed according to the analysis for the characteristic of curve vector data. The compression scheme includes 3 steps: integer form of vector data, offset sequence processing with IWT and coding compression of transformed wavelet coefficients. The lossy coding of curve vector data was realized with the dictionary coding of FCM. Compared with other algorithms, this method has the characteristics of high compression ratio and less distortion.
作者 张君兰 王毅
出处 《现代电子技术》 2010年第22期117-119,122,共4页 Modern Electronics Technique
基金 国家高科技研究发展计划(2007AA12Z156) 教育部新世纪优秀人才支持计划(NET-06-0131)
关键词 空间矢量数据 整数小波变换 模糊C均值聚类 字典法编码 SHP spatial vector data integer wavelet transform (IWT) FCM dictionary encoding SHP
  • 相关文献

参考文献5

二级参考文献25

  • 1Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature [J]. The Canadian Cartographer, 1973, 10 (2): 112-122 被引量:1
  • 2Kolesnikov A, Akimov A. Distortion constrained compression of vector maps [C] //Proceedings on Applied computing, Seoul, of the 2007 ACM Symposium 2007:8-12 被引量:1
  • 3Kolesnikov A, Franti P. A fast near optimal algorithm for approximation of polygonal curves [C] //Proceedings of Pattern Recognition, Quebec City, 2002:335-338 被引量:1
  • 4Kolesnikov A, Franti P. A fast near-optimal min polygonal approximation of digitized curves [C]//Proceedings of Automation, Control and Information Technology, Novosibirsk, 2002 : 418-422 被引量:1
  • 5Kolesnikov A, Franti P. Fast algorithm for multiple-objects rain-ε problem [C]//Proceedings of Image Processing, Barcelona, 2003, 1:221-224 被引量:1
  • 6Kolesnikov A, Franti P. Polygonal approximation of closed contours [C]//Proceedings of Image Analysis, Goteborg, 2003:778-785 被引量:1
  • 7Kolesnikov A, Franti P. Reduced search dynamic programming for approximation of polygonal curves [J]. Pattern Recognition Letters, 2003, 24(14): 2243-2254 被引量:1
  • 8Nolesnikov A, Franti P. Data reduction of large vector graphics[J]. Pattern Recognition, 2005, 38(3): 381-394 被引量:1
  • 9Akimov A, Kolesnikov A, Franti P. Reference line approach for vector data compression [C]//Proceedings of 2004 International Conference on Image Processing, Singapore, 2004: 1891-1894 被引量:1
  • 10Shekhar S, Huang Y, Djugash J, et al. Vector map a clustering approach [C]//Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, McLean, 2002:74-80 被引量:1

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部