期刊文献+

改进的多抗体集自适应免疫算法 被引量:1

Improved adaptive immune algorithm of multi- antibody sets
下载PDF
导出
摘要 在一般免疫算法的基础上,提出了一种改进的多抗体集自适应免疫算法AIAMA。该算法把初始抗体集分成多个子抗体集和一个抗体池,每个子抗体集各自发展,体现了人体免疫系统的多样性。提出了抗体集活跃度的概念,对于具有不同活跃度的抗体集采用不同的增殖策略,既能保存优秀的抗体基因,又能跳出局部在广度上进行搜索。不同抗体集的活跃度可以随着环境动态改变,使算法具有自适应的特点。最后AIAMA分别在标准数据集和地下工程数据上进行了实验,结果表明了AIAMA算法的辨识精度更高、运算时间更短。 An improved adaptive immune algorithm ofmulti-antibodies (AIAMA) is inspired by the general immune algorithm. AIAMA divides the antibodies into several sub-antibody sets and one antibody pool, each sub-antibody set develops on its own which shows the diversity of the human immune system. The concept of 'activity' is proposed that can decides the propagation strategy, in this way it can not only reserve the excellent antibody gene but also avoid local search, and the activity can adapt itself by sensing the change of the environment to make this algorithm adaptive. Finally the results of experiments based on the standard data set and underground engineering data set show that ALAMA has higher efficiency and quicker running time.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第21期4661-4664,4681,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(50778109) 上海市科技攻关计划基金项目(08511501702) 上海市重点学科建设基金项目(J50103)
关键词 免疫算法 多抗体集 活跃度 自适应 并行计算 immune algorithm multi-antibody sets activity adaptive algorithm parallel computing
  • 相关文献

参考文献4

二级参考文献80

  • 1戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256. 被引量:52
  • 2戴汝为,王珏.巨型智能系统的探讨[J].自动化学报,1993,19(6):645-655. 被引量:39
  • 3徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 4陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16. 被引量:8
  • 5学科交叉和技术应用专门小组(美).学科交叉和技术应用[R].北京:科学出版社,1994.43. 被引量:1
  • 6M N O Sadiku. Artificial Intelligence [ J ]. IEEE Potentials, 1989, 8(2) :35 - 39. 被引量:1
  • 7R J Patton, C J Lopez-Toribio, F J Uppal. Artificial intelligence approaches to fault diagnosis[ A]. IEE Colloquium on Condition Monitoring :Machinety, External Structures and Health (Ref. No. 1999/034)[ C]. London:The Institute of Electrical Eagineers, 1999.5/1 - 5/18. 被引量:1
  • 8R Orwig, H Chen, D Vogel, et al. A multi-agent view of strategic planning using group support systems and artificial intelligence [J]. Group Decision and Negotiation, 1997,6( 1 ) : 37 - 59. 被引量:1
  • 9A Christopher, Welty, G Peter, Selfridge. Artificial intelligence and software engineering: Breaking the toy mold [ J ]. Automated Software Engineering. 1997,4(3) :255 - 270. 被引量:1
  • 10Donald Gillies. Book review: Artificial intelligence and scientific method [ J]. Journal of Intelligent and Robotic Systems. 1998,22( 1 ) :87-95. 被引量:1

共引文献260

同被引文献18

  • 1Dervis Karaboga, Celal Ozturk. A novel clustering approach: Artificial bee colony (ABC) algorithm [J]. Applied Soft Corn puting, 2011, 25 (12): 652-657. 被引量:1
  • 2Jongwoo Song, Dan L. A sequential clustering algorithm with applications to gene expression data [J]. Journal of the Korean Statistical Society, 2009, 38 (9): 175-184. 被引量:1
  • 3Graaff A J, Engelbrecht A P. Clustering data in an uncertain environment using an artificial immune system [J]. Pattern Recognition Letters, 2011, 32 (9): 342-351. 被引量:1
  • 4Kannan, Ramathilagamb, Chung C. Effective fuzzy c-means clustering algorithms for data clustering problems [J]. Expert Systems with Applications, 2012, 39 (11): 6292-6300. 被引量:1
  • 5Aristidis Likasa, Nikos Vlassisb, JakobJ Verbeekb. The global k-means clustering algorithm [J]. Pattern Recognition, 2003, 36 (2):451-461. 被引量:1
  • 6LI Chunsheng. Cluster center initialization method for K-means algorithm over data sets with two clusters [J]. Procedia Engi- neering, 2011, 24 (11):324-328. 被引量:1
  • 7CHEN Shyi-Ming, Kurniawan Tanuwijaya. Fuzzy forecasting based on high-order fuzzy logical relationships and automatic clustering techniques [J]. Expert Systems with Applications, 2011, 38 (12): 15425-15437. 被引量:1
  • 8Siuly, LI Yan, WEN Peng. Clustering technique-based least square support vector machine for EEG signal classification [J]. Computer Methods and Programs in Biomedicine, 2011, 104 (3): 358-372. 被引量:1
  • 9YUE Shihong, WEI Miaomiao, WANG Jeen-Shing, et al. A general grid-clustering approach [J]. Pattern Recognition Let- ters, 2008, 29 (9): 1372-1384. 被引量:1
  • 10Ramiz M, Aliguliyev. Performance evaluation of density-based clustering methods[J]. Information Sciences, 2009, 179 (9) : 3583-3602. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部