摘要
考察了一类含有一阶和二阶导数的非线性三阶两点边值问题的解和正解,通过构造适当的Banach空间,利用相应的积分方程,建立了两个存在性定理.结果表明,只要非线性项在其定义域的某个子集上的"高度"是适当的,该问题一定存在一个解或正解.
The solutions and positive solutions are considered for a class of nonlinear third-order twopoint boundary value problems with first and second derivatives included.By establishing proper Banach space and applying corresponding integral equation,two existence theorems are established.The main results show that the problem has one solution or positive solution provided the "height" of nonlinear term is appropriate on some bounded subset of its domain.
出处
《徐州工程学院学报(自然科学版)》
CAS
2010年第3期73-76,共4页
Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
关键词
三阶常微分方程
不动点定理
解
third-order ordinary differential equation
Schauder's fixed theory
solutions