期刊文献+

一类非线性三阶两点边值问题解和正解的存在性 被引量:3

Solutions and Positive Solutions to a Class of Nonlinear Third-Order Two-Point Boundary Value Problems
下载PDF
导出
摘要 考察了一类含有一阶和二阶导数的非线性三阶两点边值问题的解和正解,通过构造适当的Banach空间,利用相应的积分方程,建立了两个存在性定理.结果表明,只要非线性项在其定义域的某个子集上的"高度"是适当的,该问题一定存在一个解或正解. The solutions and positive solutions are considered for a class of nonlinear third-order twopoint boundary value problems with first and second derivatives included.By establishing proper Banach space and applying corresponding integral equation,two existence theorems are established.The main results show that the problem has one solution or positive solution provided the "height" of nonlinear term is appropriate on some bounded subset of its domain.
作者 孙树伟
机构地区 徐州工程学院
出处 《徐州工程学院学报(自然科学版)》 CAS 2010年第3期73-76,共4页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
关键词 三阶常微分方程 不动点定理 third-order ordinary differential equation Schauder's fixed theory solutions
  • 相关文献

参考文献3

二级参考文献15

  • 1姚庆六.一类非线性四阶三点边值问题的可解性[J].山东大学学报(理学版),2006,41(1):11-15. 被引量:9
  • 2Austin G.Biomathematical Model of the Circle of Willis Ⅰ:the Duffing Equation and Some Approximate Solutions[J].Math Biosci,1971,11:163-172. 被引量:1
  • 3Nieto J J,Torres A.A Mathematical Model of Aneurysm of Circle of Willis[J].J Biol Syst,1995,3:653-659. 被引量:1
  • 4Nieto J J,Torres A.A Nonlinear Biomathematical Model for the Study of Intracranial Aneurysms[J].Journal of the Neurological Sciences,2000,177:18-23. 被引量:1
  • 5Nieto J J,Torres A.Approximation of Solutions for Nonlinear Problems with an Application to the Study of Aneurysms of the Circle of Willis[J].Nonlinear Analysis,2000,40:513-521. 被引量:1
  • 6Bernfeld S R.An Introduciton to Nonlinear Boundary Value Problems[M].New York:Academic Press,1974:15-30. 被引量:1
  • 7Rudolf B.A Multiplicity Result for a Periodic Boundary Value Problem[J].Nonlinear Analysis,1997,28(1):137-144. 被引量:1
  • 8Mawhin J.Point Fixes,Points Critiqueset Problems Aux Limites[M].Semin Math Sup No.92.Montreal:Presses University Montreal,1985. 被引量:1
  • 9Hashimoto N,Handa H,Hazzama F.Experimentally Induced Cerebral Aneurysms in Rats[J].Surg Neurol,1978,10:3-8. 被引量:1
  • 10王秀群,倪守平.四阶微分方程三点边值问题的奇摄动[J].数学物理学报(A辑),2002,22(1):41-47. 被引量:11

共引文献17

同被引文献26

  • 1陈敏.变分问题中直接法在力学中应用[J].金陵科技学院学报,2006,22(2):5-8. 被引量:1
  • 2Killbas A,Srivastava H M,Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier, 2006 : 15. 被引量:1
  • 3Wang G,Ahmad B,Zhang L. Impulsive Anti-periodic Boundary Value Problem for Nonlinear Differential Equations of Fractional Order[J]. Nonlinear Analysis, 2011,74 (3) : 792-- 804. 被引量:1
  • 4Smart D R. Fixed Point Theorems[M]. London :Cambridge University Press, 1980:17. 被引量:1
  • 5I F Steffensen. Remarks on iteration [ J ]. Skand. Ak- tuarietidskr,1933, 16:64-72. 被引量:1
  • 6J R Sharma. A composite third order Newton-Steffensen method for solving nonlinear equations [ J ]. Appl. Math. Comput. , 2005, 169 : 242-246. 被引量:1
  • 7M V Kanwar, V K Kukreja, S Singh. On a class of quadratically convergent iteration formulae [ J ]. Appl. Math. Comput. , 2005, 166: 633-637. 被引量:1
  • 8Nenad Ujevic. A method for solving nonlinear equations [J]. Appl. Math. Comput., 2006,174: 1416-1426. 被引量:1
  • 9Nenad Ujevic. An iterative method for solving nonlinear equations [J]. J. Comput. And Appl. Math., 2007, 201 : 205-216. 被引量:1
  • 10Muhammad Aslam Noor, Faizan Ahmad. Fourth-order convergent iterative method for nonlinear equation [ J ]. Appl. Math. Comput. , 2006, 182: 1000-1004. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部