期刊文献+

(G′/G)-展开方法及Fitzhugh-Nagumo方程新的孤波解

(G′/G)-expansion Method and the New Solitary Wave Solutions of Fitzhugh-Nagumo Equation
下载PDF
导出
摘要 应用(G′/G)-展开方法导出了Fitzhugh-Nagumo非线性方程新的孤波解. The(G′/G)-expansion method is used to construct new solitary wave solutions of Fitzhugh-Nagumo equation.
作者 周建荣
出处 《湖南理工学院学报(自然科学版)》 CAS 2010年第3期21-23,共3页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 广东高校优秀青年创新人才培育项目(LYM08101)
关键词 孤波解 (G′/G)-展开方法 FITZHUGH-NAGUMO方程 solitary wave solutions (G′/G)-expansion method Fitzhugh-Nagumo equation
  • 相关文献

参考文献15

  • 1S.Abbasbandy,A.Shirzadi.The first integral method for modified Benjamin–Bona–Mahony equation. Commun Nonlinear Sci Numer Simulat . 2010 被引量:1
  • 2Ablowitz MJ,Clarkson PA.Solitons,nonlinear evolution equations and inverse scattering transfor. . 1990 被引量:1
  • 3Bekir A.Applications of the extended tanh method for coupled nonlinear evolution equations. Commun Nonlinear Sci Numer Simulat . 2008 被引量:1
  • 4Chaofa Deng.New exact solutions to the Zakharov–Kuznetsov equation and its generalized form. Commun Nonlinear Sci Numer Simulat . 2010 被引量:1
  • 5Hirota R.Direct method of finding exact solutions of nonlinear evolution equations. Backlund Transformations . 1980 被引量:1
  • 6F.Tascan,A.Bekir.Travelling wave solutions of the Cahn-Allen equation by using first integral method. Journal of Applied Mathematics . 2009 被引量:1
  • 7F.Tascan,A.Bekir,M.Koparan.Travelling wave solutions of nonlinear evolution equations by using the first integral method. Communications inNonlinear Science and Numerical Simulation . 2009 被引量:1
  • 8Wazwaz AM.The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations. Appl.Math.Coptut . 2007 被引量:1
  • 9Wazwaz AM.Multiple soliton solutions for a (2+1)-dimensional integrable KdV6 equation. Commun Nonlinear Sci Numer Simulat . 2010 被引量:1
  • 10Xu F.Application of Exp-function method to symmetric regularized long wave (SRLW)equation. Physics Letters A . 2008 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部