摘要
应用锥上不动点定理,研究具有p-Laplacian算子边值问题{(φp(x'(t))'+h(t)f(x(t-τ))=0,t∈(0,1)x'(0)=0,ax'(1)+x(1)=0其中0≤τ<1,α∈R+,h:(0,1)→[0,+∞),0<∫01 h(s)ds<+∞,f:[0,+∞)→R,φp(s)=|s|p-2s,p>1,(φp)-1=φq,1/p+1/q=1,获得了保证正解存在的充分条件.
By using a fixed point theory in cones,the paper studies the existence of positive solution for the two-point boundary-values problem {(φp(x'(t))'+h(t)f(x(t-τ))=0,t∈(0,1)x'(0)=0,ax'(1)+x(1)=0 Where 0≤τ 1,α∈ R+,h :(0,1) →[0,+ ∞),0 ∫^10 h(s) ds + ∞,f :[0,+ ∞) → R,φp(s) =|s|p-2 s,p1,(φ p)-1 = φq,1/p + 1/q = 1 sufficient conditions that guarantee the existence of positive solutions.
出处
《湖南理工学院学报(自然科学版)》
CAS
2010年第3期17-20,共4页
Journal of Hunan Institute of Science and Technology(Natural Sciences)