期刊文献+

Nonlinear waves in a fluid-filled thin viscoelastic tube 被引量:2

Nonlinear waves in a fluid-filled thin viscoelastic tube
下载PDF
导出
摘要 In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom- pressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid-liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the expo- nent c~ of the perturbation parameter in Gardner-Morikawa transformation according to the order of viscous coefficient 7, three kinds of evolution equations with soliton solution, i.e. Korteweg-de Vries (KdV)-Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed. In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom- pressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid-liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the expo- nent c~ of the perturbation parameter in Gardner-Morikawa transformation according to the order of viscous coefficient 7, three kinds of evolution equations with soliton solution, i.e. Korteweg-de Vries (KdV)-Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
作者 张善元 张涛
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期53-59,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 10772129)
关键词 fluid-filled tube solitary wave KdV-Burgers equation Kelvi-Vogit model fluid-filled tube, solitary wave, KdV-Burgers equation, Kelvi-Vogit model
  • 相关文献

参考文献13

  • 1Yang H L, Song J B, Yang L G and Liu Y J 2007 Chin. Phys. 16 3589. 被引量:1
  • 2Lighthill J 1978 Waves in Fluids (Cambrige: Cambrige University Press) p231. 被引量:1
  • 3Hashizume Y 1985 J. Phys. Soc. Japan 54 3305. 被引量:1
  • 4Demiray H 2002 Appl. Math. Comput. 133 29. 被引量:1
  • 5Demiray H 2008 Int. J. Non-linear Mech. 43 241. 被引量:1
  • 6Duan W S, Wang B R and Wei R J 1997 Phys. Rev. E 55 1773. 被引量:1
  • 7Zhang T and Zhang S Y 2009 Mech. Engineer. 31 25 (in Chinese). 被引量:1
  • 8Fung Y C 1997 Biomechanics: Circulation (New York: Spinger-Verlag) p108. 被引量:1
  • 9Yao R X, Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 1821. 被引量:1
  • 10Zhang H P, Li B, Chen Y and Huang F 2010 Chin. Phys. B 19 020201. 被引量:1

同被引文献6

  • 1Hashizume Y. Nonlinear pressure wave in a fluid-filled elastictube[J]. Journal of the Physical Society of Japan,1985,54(9):3305-3312. 被引量:1
  • 2Fung Y C. Biomechanics : circulation[M].2nd ed. New York :Springer,1997. 被引量:1
  • 3Lighthill M J. Waves in fluids[J]. Measurement Science &Technology, 1978,20(2): 267-293. 被引量:1
  • 4Malfliet W, Wieers E. The theory of nonlinear ion-acoustic wavesrevisited[J]. Plasma Physics, 1996, 56(3): 441-450. 被引量:1
  • 5Johnston C R. Solitary wave in fluid-filled elastic tubes[D]. Calgaiy:The University of Calgary. 2001. 被引量:1
  • 6张涛,张善元.弹性地基内充液压力管道中的非线性波[J].力学与实践,2009,31(6):25-29. 被引量:2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部