期刊文献+

Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method 被引量:1

Prediction of protein binding sites using physical and chemical descriptors and the support vector machine regression method
下载PDF
导出
摘要 In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method. In this paper a new continuous variable called core-ratio is defined to describe the probability for a residue to be in a binding site, thereby replacing the previous binary description of the interface residue using 0 and 1. So we can use the support vector machine regression method to fit the core-ratio value and predict the protein binding sites. We also design a new group of physical and chemical descriptors to characterize the binding sites. The new descriptors are more effective, with an averaging procedure used. Our test shows that much better prediction results can be obtained by the support vector regression (SVR) method than by the support vector classification method.
作者 孙重华 江凡
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期1-6,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos. 10674172 and 10874229)
关键词 protein binding site support vector machine regression cross-validation neighbour residue protein binding site, support vector machine regression, cross-validation, neighbour residue
  • 相关文献

参考文献22

  • 1Zhou H X and Qin S B 2007 Bioinformatics 23 22032209. 被引量:1
  • 2Smith J R and Sternberg M J 2002 Curt. Opin. Struct. Biol. 12 28. 被引量:1
  • 3Hu Z, Ma B, Wolfson H and Nussinov R 2000 Proteins 39 331. 被引量:1
  • 4Ma B, Elkayam T, Wolfson H and Nussinov 2003 Proc. Natl Acad. Sci. USA 100 5772. 被引量:1
  • 5Armon A, Graur Dan and Ben-Tal N 2001 J. Mol. Biol. 307 447. 被引量:1
  • 6de Vries S J, van Dijk A D J and Bovin A M J J 2006 Proteins 63 479. 被引量:1
  • 7Chen H and Zhou H X 2005 Proteins 61 21. 被引量:1
  • 8Janin J, Miller S and Chothia C 1988 J. Mol. Biol. 204 155. 被引量:1
  • 9Li N, Sun Z and Jiang F B M C 2008 Bioinformatics 9 553. 被引量:1
  • 10Chakrabarti P and Janin J 2002 Proteins 47 334. 被引量:1

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部