期刊文献+

基于PCA-SOM的混合协同过滤模型 被引量:13

Effective hybrid collaborative filtering model based on PCA-SOM
原文传递
导出
摘要 针对推荐系统中协同过滤技术面临的数据稀疏性和推荐实时性难以保证的问题,提出一种基于主成分分析(Principle component analysis)和SOM(Self-organizing map)聚类的混合协同过滤模型.首先对原始评分数据进行全局降维,并在转换后的主成分空间上进行用户聚类,缩小了目标用户的最近邻搜索空间,减少了在线计算时间复杂度,最后对真实的电子政务门户网站Log日志数据进行了几种常用的推荐算法的比较,实验结果证明新的推荐模型具有较好的预测精度. To alleviate data sparsity and scalability issues of collaborative filtering technique in recom-mendation systems,a new hybrid collaborative filtering model based on Principle Component Analysis and Self-Organizing Map cluster method was proposed.In our approach,dimension reduction technique was first performed on whole data space.The clusters were generated from relatively low dimension vector space transformed by the first step,and then used for neighborhood selection in stead of searching in the whole user space,which can reduce the computation complexity in online recommendation.The experiments were based on web log data from E-government portal web site,and the results indicate that the proposed algorithm can provide better prediction accuracy compared with some exiting collaborative filtering algorithms.
作者 郁雪 李敏强
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2010年第10期1850-1854,共5页 Systems Engineering-Theory & Practice
基金 高等学校博士学科点专项科研基金(20020056047)
关键词 推荐系统 协同过滤算法 主成分分析 自组织映射 聚类技术 recommendation system collaborative filtering principle component analysis self-organizing map clustering technique
  • 相关文献

参考文献10

  • 1(美)Simon,Haykin著,叶世伟,史忠植译..神经网络原理[M].北京:机械工业出版社,2004:633.
  • 2()RichardA.Johnson,()DeanW.Wichern著,陆璇.实用多元统计分析[M]清华大学出版社,2001. 被引量:1
  • 3Ken Goldberg,Theresa Roeder,Dhruv Gupta,Chris Perkins.Eigentaste: A Constant Time Collaborative Filtering Algorithm[J]. Information Retrieval . 2001 (2) 被引量:1
  • 4Kohrs A,,Merialdo B.Clustering for collaborative filtering applications. Proceedings of CIMCA‘99 . 1999 被引量:1
  • 5Gui-Rong Xue,Chenxi Lin,Qiang Yang.Scalable Collaborative Filtering Using Cluster-based Smoothing. . 2005 被引量:1
  • 6Badrul Sarwar,George Karypis,Joseph Konstan,et al.Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International World Wide Web Conference . 2001 被引量:1
  • 7Badrul Sarwar,George Karypis,Joseph Konstan,et al.Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International World Wide Web Conference . 2001 被引量:1
  • 8Breese J,Hecherman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering. Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence . 1998 被引量:1
  • 9Sarwar BM,Karypis G,Konstan JA,et al.Item-Based Collaborative Filtering Recommendation Algorithms. Proceedings of the 10th International World Wide Web Conference . 2001 被引量:1
  • 10Schafer J B,Konstan J,Riedl J.Application of dimensionality reduction in recommender system-A Case study. Proceedings of the WebKDD Workshop at the ACM-SIG-KDD Conference on Knowledge Discovery in Databases . 2000 被引量:1

同被引文献305

引证文献13

二级引证文献446

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部