期刊文献+

分段连续微分方程θ-方法的稳定性(英文) 被引量:1

The differential equation with piecewise continuous arguments
下载PDF
导出
摘要 讨论分段连续型微分方程x′(t)=ax(t)+a1x([t+3])的解析解的稳定性,得出其渐进稳定的一个充分必要条件。应用θ-方法求解此分段连续型微分方程,得到相应的数值稳定区域,给出数值解的稳定区域包含解析解的稳定区域的一个充分必要条件。应用线性θ-方法求解了微分方程x′(t)=ax(t)+a1x([t+p]),给出此类数值方法渐进稳定的一个充分条件,得出数值解的稳定区域包含解析解的稳定区域的充分条件。 The stability of the analytic solution of the differential equation x′(t)=ax(t)+a1x() with piecewise continuous arguments is considered.The conditions of asymptotic stability for the equation are obtained.Moreover,θ-methods are applied to this kind of equations,and the stability region of θ-method is obtained.A necessary and sufficient condition under which the analytic stability region is contained in the numerical stability region is also obtained.Then,apply the linear θ-method to the equation x′(t)=ax(t)+a1x(),a sufficient condition of the asymptotic stability is investigated,and a sufficient condition is obtained under which the analytic stability region is contained in the numerical stability region.
作者 张如 徐阳
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2010年第5期639-644,共6页 Journal of Natural Science of Heilongjiang University
基金 Supported by Natural Science Foundation of Heilongjiang Province(A200602) the Science Research Foundation(HITC200710) the Natural Scientific Research Innovation Foundation(HIT.NSRIF.2009053)
关键词 分段连续微分方程 Θ-方法 稳定性 delay differential equations with piecewise continuous arguments θ-method stability
  • 相关文献

参考文献8

  • 1COOKE K L, WIENER J. Retarded differential equations with piecewise constant delays[ J]. J Anal Math, 1984, 99 (1) :265 -297. 被引量:1
  • 2SHAH S M, WIENER J. Advanced differential equations with piecewise constant argument deviations[ J ]. J Math Sci, 1983,6(4) :671 -703. 被引量:1
  • 3WIENER J. Generalized solutions of functional differential equatins[ M]. Singapore: World Scientific, 1993:32 - 39. 被引量:1
  • 4WIENER J. Generalized solutions of functional differential equations[ M]. Singapore: World Scientific Publishing, 1983:1 - 85. 被引量:1
  • 5LAMBERT J D. Numerical methods for ordinary differential systems[M]. New York: John Wiley and Sons, 1993:13 -15. 被引量:1
  • 6SONG M H, YANG Z W, LIU M Z. Stability of θ - methods for advanced differential equations with piecewise continuous arguments[ J]. J Comp Appl Math, 2005,49(9 - 10) :1295 - 1301. 被引量:1
  • 7匡蛟勋著..泛函微分方程的数值处理[M].北京:科学出版社,1999:226.
  • 8高建芳,刘明珠.自变量分段连续超前型延迟微分方程的θ-方法的数值振动性(英文)[J].黑龙江大学自然科学学报,2008,25(2):196-198. 被引量:4

二级参考文献10

  • 1Luo Jiaowan. Oscillation and linearized oscillation of a logistic equation with several delays[ J]. Appl Math Comput, 2002,131:469 -476. 被引量:1
  • 2Luo Zhiguo, Shen Jianhua. New results on oscillation for delay differential equations with piecewise constant argument [ J ]. Comput Math Appl, 2003, 45 : 1841 - 1848. 被引量:1
  • 3Shen J H, Stavroulakis I P. Oscillatory and nonoscillatory delay equations with piecewise constant argument[ J ]. J Math Anal Appl, 2000,248:385 -401. 被引量:1
  • 4Song M H, Yang Z W, Liu M Z. Stability of θ - methods for advanced differential equations with piecewise continuous arguments[ J ]. Comput Math Appl, 2005, 49 : 1295 - 1301. 被引量:1
  • 5Wiener J. Generalized solutions of functional differential equations[ M ]. Singapore : World Scientific, 1993. 被引量:1
  • 6Yang Zhanwen, Liu Mingzhu, Song Minghui. Stability of Runge - Kutta methods in the numerical solution of equation u'(t) = au(t) + a0u ( [t] ) +a1u( [t - 1] )[J]. Appl Math Comput, 2005,163:37 -50. 被引量:1
  • 7Dzurina J, Stavroulakis I P. Oscillation criteria for second -order delay differential equations[ J ]. Appl Math Comput, 2003,140:445 -453. 被引量:1
  • 8El - Owaidy H, Mohamed H Y. Linearized oscillation for non - linear systems of delay differential equations [ J ]. Appl Math Comput, 2003,142 : 17 -21. 被引量:1
  • 9Gyori,I, Ladas G. Oscillation theory of delay equations: with applications[ M ]. Oxford:Clarendon press, 1991. 被引量:1
  • 10Kubiaczyk I, Saker S H, Morchalo J. New oscillation criteria for first order nonlinear neutral delay differential equations [ J ]. Appl Math Comput, 2003,142:225 - 242. 被引量:1

共引文献3

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部