期刊文献+

耦合KdV方程的延拓结构

Prolongation Structure of Coupled KdV Equation
下载PDF
导出
摘要 本篇论文主要利用延拓结构理论,对耦合KdV方程进行研究,并得到了该方程延拓代数对应的Lax对. The coupled KdV equation proposed by,is investigated in the framework of prolongation structure theory.Its Lax representation of prolongation algebra is constructed.
出处 《青海师范大学学报(自然科学版)》 2010年第3期7-11,共5页 Journal of Qinghai Normal University(Natural Science Edition)
关键词 耦合KDV方程 延拓结构 LAX对 coupled KdV equation prolongation structure Lax representation
  • 相关文献

参考文献9

  • 1H C Morris. Time_dependent propagation of high energy laser bems through the atmosphere[J]. MathPhys, 1978,4:76-85. 被引量:1
  • 2A Chowdhury,T Roy:Prolongation Structure and Inverse Scattering Formalism for Super symmetricSine_GordonEquation In Ordinary Space Time Variable[J]. MathPhys, 1979,20 : 45- 59. 被引量:1
  • 3K R Dodd, C J Eilbeek and C H Morris, Solitons and Nonlinear Equations[M]. London:Academic press, 1984,389. 被引量:1
  • 4W Z Zhao,Y Q Bai,K Wu. Generalized inhomogeneous H eisenberg ferromagnet model and generalized nonlinear Schredinger equation[C]. PhysLett ;A; 2006,3 : 52- 64. 被引量:1
  • 5C Das,A Chowdhury, Chaos. On theprolongation structure and integrability of HNLS equation[J]. Solitons&Fractals, 2001,12: 2081-2090. 被引量:1
  • 6E A finito,V Grassi,R A Leo:Equations of thereaction--diffusion type with a loop algebra strueture[J]. G Profilo and G:Soliani; Inverse Problems ; 1998 ; 14 : 1387-1393. 被引量:1
  • 7I To M: Symmetries and conservation laws of a coupled nonlinear wave equation[J]. PhysLet,A 1982,91 :335-343. 被引量:1
  • 8O R YOhta ; R Hirota, Quasideterminant solutions of anon_Abelian Hirot- Miwa equation[J]. PhysSocJpn, 2007:76 : 24- 35. 被引量:1
  • 9X G Geng; Y T Wu. From the special 2+ 1 Toda lattice to the Kadomtsev_Petviashvili equation[J]. Math Phys, 1997,38:3069- 3077. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部