期刊文献+

基于股价指数预测的仿真研究 被引量:9

Study on Simulation of Stock Price Index Forecasting
下载PDF
导出
摘要 研究股价预测问题,针对股价指数具有不稳定和时变性,单一预测方法预测准确度低、误差过大,为提高预测精度,消除噪声,提出一种小波分析的自回归滑动平均(ARIMA)与BP神经网络(BPNN)相结合的股价指数组合预测方法。组合预测方法首先采用小波分析对股价原始数据进行分解和重构,股价数据经过小波处理后,变成线性和非线性两部分,采用ARIMA和BPNN分别对线性部分和非线部分进行预测,最后组合两者预测结果得到股价指数最终预测结果,用上证A股的收盘指数数据对组合预测方法进行了验证测试,实验结果表明组合预测方法比单一预测方法预测准确度高,误差小,在股价指数预测中具有广泛的应用前景,可为股市提供参考。 Based on the analysis of the characteristics of nonlinearity and strong interference of stock price due to the complex and uncertainty of time variance,a new approach was proposed for stock price prediction.Firstly,wavelet transform is employed to decomposition the original stock price data to reflect the essence and variation of t stock price Then a hybrid methodology that exploits the unique strength of the ARIMA model and BPNN model to forecast t stock price Finally,numerical field examples were given to testify the precision of the model.The result shows that(1) the hybrid model can produce more accurate predictions than that of single model;(2) the hybrid model that uses the method of wavelet decomposition is more efficient and reliable.The hybrid model based on wavelet decomposition can be an efficient method to the dynamic stock price prediction.
出处 《计算机仿真》 CSCD 北大核心 2010年第10期297-300,共4页 Computer Simulation
关键词 组合预测 小波分析 神经网络 股票价格 Combination forecast Wavelet analysis Neural network Stock price
  • 相关文献

参考文献3

二级参考文献16

共引文献63

同被引文献80

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部