期刊文献+

基于多重图形剖分算法的免疫策略

Immunization strategy based on multilevel graph partitioning algorithm
下载PDF
导出
摘要 如何免疫网络中较少数量的节点是当前的热点,目标免疫被认为是当前最好的免疫策略,尤其对于无标度网络。考虑到目标免疫可能把网络分割成较小的单元,而多重图形剖分算法可以把图形分成特定大小的单元,并且单元之间具有很少的边相连。因而,采用多重图形剖分算法来免疫ER网络和BA网络。实验结果表明:该策略是可行的。 The question of how to immunize a network with a minimal number of immunization does is of current interest. Targeted immunization is widely regarded as the most effective strategy, especially for scale-free networks. Considering the strategy can partition the network into small size clusters, but multilevel graph partitioning algorithm can dividing the vertices of a graph into sets of specified sizes, so that few edges cross between sets. Multilevel graph partitioning algorithm is adopted to immunize a ER network and BA network. Experimental results show that this strategy is feasible.
出处 《传感器与微系统》 CSCD 北大核心 2010年第10期68-70,74,共4页 Transducer and Microsystem Technologies
关键词 目标免疫 多重图形剖分算法 SIS病毒传播模型 ER网络 无标度网络 targeted immunization multilevel graph partitioning algorithm SIS virus spreading model ER network scale-free network
  • 相关文献

参考文献13

二级参考文献120

共引文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部