期刊文献+

基于知识域的多目标优化免疫算法 被引量:1

Multi-objective Optimization Immune Algorithm Based on Knowledge Domain
下载PDF
导出
摘要 针对传统免疫算法存在早熟收敛以及多样性不足的问题,提出一种基于知识域的多目标优化免疫算法。通过初始化知识域选择精英解,利用该精英解集自适应更新知识域的边界,从而维持算法收敛性与多样性的平衡。测试结果表明,相比NSGAII、SPEAII算法,该算法在运行时间、多样性以及覆盖性方面具有较大优势。 Aiming at the problem of premature convergence and insufficient diversity in traditional immune algorithm,this paper proposes a multi-objective optimization immune algorithm based on knowledge domain.The algorithm selects the elite solution by initializing knowledge domain,self-adaptive updates knowledge domain border by using this elite solution to maintain the balance between the convergence and diversity.Test results show that the algorithm has great advantage on convergence,diversity and run time.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第20期161-163,共3页 Computer Engineering
基金 南京邮电大学青蓝基金资助项目(NY207081)
关键词 知识域 多目标优化 免疫算法 knowledge domain multi-objective optimization immune algorithm
  • 相关文献

参考文献7

  • 1Deb K,Pratap A,Agarwal S,et al.A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. 被引量:1
  • 2Zitzler E,Laumans M,Thiele L.SPEA2:Improving the Strength Pareto Evolutionary Algorithm[EB/OL].(2009-01-26).http://www.citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.5073.pdf. 被引量:1
  • 3Carlos A,Coello C,Becerra R L.Evolutionary Multiobjective Optimization Using a Cultural Algorithm[C] //Proc.of 2003 IEEE Swarm Intelligence Symposium.Indianapolis,USA:IEEE Press,2003. 被引量:1
  • 4Jin Yaochu.A Comprehensive Survey of Fitness Approximation in Evolutionary Computation[J].Soft Computing Journal,2005,9(1):3-12. 被引量:1
  • 5Knowles J.PraEGO:A Hybrid Algorithm with On-line Landscape Approximation for Expensive Multiobjective Optimization Problems[J].IEEE Transactions on Evolutionary Computation,2006,10(1):50-66. 被引量:1
  • 6Knowles J,Corne D W.Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy[J].Evolutionary Computation,2000,8(2):149-172. 被引量:1
  • 7徐佳,张卫.人工免疫系统中的抗体生成与匹配算法[J].计算机工程,2010,36(9):181-183. 被引量:9

二级参考文献6

共引文献8

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部