期刊文献+

基于特征选择和变精度粗集的属性约简方法及其应用 被引量:2

A Method for Attribute Reduction Based on Attribute Selection and Variable Precision Rough Set and its Application
下载PDF
导出
摘要 针对机械故障诊断知识的近似最优属性约简不惟一要求,从得到多个满足分类精度的属性约简集合的目标出发,提出了一种基于特征选择和变精度粗集的属性约简方法。该算法将特征选择过程,从由完全属性集开始的属性删除方式转变为从核属性出发以增加关键属性为主的多目标方式;同时引入决策属性支持度,保证了约简结果对于论域对象分类的准确率。通过机械故障状态数据的实例应用,表明该方法可获得旋转机械各类典型故障的关键属性,得到了给定准确度下的多个约简集合。 Aiming at the multi-objective demands of optimal attributes reduction for rotating machinery fault diagnosis knowledge,and starting with obtaining diverse attribute reduction sets of meeting given classification precision,an attribute reduction approach based on attributes selection and variable precision rough set model is put forward.The procedure of the attributes selection in the method is to transform the mode of calculation procedure of attributes reduction from decreasing attributes to increasing key attributes.Moreover,the results of attributes reduction were unique no longer.In the course of the calculation of attribute subsets,decision attribute support degree is introduced to ensure accuracy of reduction results to classification of universe elements.The attribute reduction method was applied to machinery fault data.The results show that the key attributes of all typical faults and the attribute reduction sets for meeting the given accuracy can be obtained.
出处 《机械科学与技术》 CSCD 北大核心 2010年第10期1412-1416,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(50875118) 甘肃省教育厅硕导基金项目(0903-11)资助
关键词 变精度粗糙集 特征选择 属性约简 机械故障诊断 variable precision rough set attribute selection attribute reduction machinery fault diagnosis
  • 相关文献

参考文献11

二级参考文献29

  • 1伍星,陈进,李如强,陈一鸣.基于数据挖掘的设备状态监测和故障诊断[J].振动与冲击,2004,23(4):70-74. 被引量:22
  • 2Pawlak, Zdzislaw. Rough sets and intelligent data analysis. Information Sciences, 2002, 147 (1 -4): 1 ~ 12. 被引量:1
  • 3Shen Lixiang, T ay Francis E H, Qu Liangsheng Shen Yudi. Fault Diagnosis Using Rough Sets Theory. Computers in Industry, 2000, 43 (1): 61 ~ 72. 被引量:1
  • 4Pawlak Z,Rough Sets. International Journal of Computer and Information Science, 1982,11 (5): 341-348. 被引量:1
  • 5Hu Tao, Lu Bingchao, Chen Guangju. A Rotary Machinery Fault Diagnosis Approach Based on Rough Sets heory. In : Proceedings of the 3thWorld Congress on Intelligent Control and Automation,Hefei, P.R.China,2000,1:685-689. 被引量:1
  • 6Zhang Qi, Han Zhenxiang,Wen Fushuan. A New Approach for Fault Diagnosis in Power Systems Based on Rough Set Theory.In:Proceeding of the 4th International Conference on Advances in Power System Control, Operation and Management,APSCOM-97,Hong Kong, 1997,2: 597-602. 被引量:1
  • 7Li Xiaolei, Wu Xiaobing. The Application of Rough Set Theory in Vehicle Transmission System Fault Diagnosis. In:Proceedings of IEEE International Conference on Vehicle Electronics, Changchun, P.R.China 1999,1:240-242. 被引量:1
  • 8Pawlak Z. Rough set[J]. Int. J. of Computer and Information Science,1982 (11): 341-356. 被引量:1
  • 9Tsumoto Shusaku. Extraction of experts' decision rules from clinical databases using rough set model[J]. Intelligent Data Analysis, 1998,2(1-4): 215-227. 被引量:1
  • 10Hong T P, Wang T T, Wang S L, et al. Learning a coverage set of maximally general fuzzy rules by rough sets[J]. Expert Systems with Applications 2000, 19(2): 97-103. 被引量:1

共引文献91

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部