期刊文献+

基于SVM和CRF的双层模型中文机构名识别 被引量:13

Chinese organization name recognition using cascaded model based on SVM and CRF
下载PDF
导出
摘要 提出了一种基于支持向量机(SVM)和条件随机场(CRF)的双层模型进行中文机构名识别的方法.第一层模型采用CRF识别简单机构名,并将识别结果传至第二层辅助下一步的识别;第二层采用基于驱动的方法,将SVM和CRF结合进行复杂机构名的识别;最后将两层的识别结果合并,并通过一个后续处理对置信度较低的识别结果进行修正.大规模真实语料的开放测试表明,精确率达到94.83%,召回率达到95.02%,证明了该方法的有效性. A cascaded approach of Chinese organization name recognition based on support vector machine(SVM)and conditional random fields(CRF)is proposed.The simple organization name is recognized in the first level with CRF,and the result is used to support the decision of the second level.Then,a drive-based method is proposed in the second level for recognition of the complicated organization name combining SVM and CRF.Finally,the results of the two levels are combined,and apost-processing to correct those results with low confidence is adopted.The results show that this approach based on SVM and CRF is efficient in recognizing organization name through open test for large-scale real linguistics,and the recalling rate achieves 95.02% and the precision rate achieves 94.83%.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第5期782-787,共6页 Journal of Dalian University of Technology
基金 中央高校基本科研业务费专项资金资助项目(DUT10RW202)
关键词 机构名识别 条件随机场(CRF) 支持向量机(SVM) 双层模型 organization name recognition conditional random fields(CRF) support vector machine(SVM) cascaded model
  • 相关文献

参考文献13

  • 1张小衡,王玲玲.中文机构名称的识别与分析[J].中文信息学报,1997,11(4):21-32. 被引量:84
  • 2ISOZAKI Hideki. Japanese named entity recognition based on a simple rule generator and deeision tree learning [C] // Proceedings of the 39th Annual Meeting Association for Computational Linguistics, San Francisco : Morgan Kaufmann, 2001 : 314-321. 被引量:1
  • 3ZHOU Guo-dong, SU Jian. Named entity recognition using an HMM-based Chunk Tagger [C] // Proceedings of the 40th Annual Meeting Association for Computational Linguistics. San Francisco : Morgan Kaufmann, 2002:473-480. 被引量:1
  • 4俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:160
  • 5TAKEUCHI Koichi, COLLIER N. Use of support vector machines in extended named entity recognition [C] // Proceedings of the 6th Conference on Natural Language Learning. Morristown:Association for Computational Linguistics, 2002 : 167-170. 被引量:1
  • 6周俊生,戴新宇,尹存燕,陈家骏.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5):804-809. 被引量:112
  • 7ZHANG Su-xiang, ZHANG Su-xian, Xiao-jie. Automatic recognition of WANG Chinese organization name based on conditional random fields [-C] // Natural Language Processing and Knowledge Engineering. Washington D C : IEEE Signal Processing Society, 2007:229-233. 被引量:1
  • 8YU Hong-kui, ZHANG Hua-ping, LIU Qun. Recognition of Chinese organization name based on role tagging [C] // 20th International Conferenee on Computer Processing of Oriental Languages. Beijing: Tsinghua University Press, 2003 : 79-87. 被引量:1
  • 9WU You-zheng, ZHAO Jun, XU Bo. Chinese named entity recognition combining statistical model with human knowledge [C] // Proceedings of the ACL Workshop on Multilingual and Mixed-language Named Entity Recognition. Morristown:Association for Computational Linguistics, 2003 : 65-72. 被引量:1
  • 10李丽双,黄德根,陈春荣,杨元生.基于支持向量机的中文文本中地名识别[J].大连理工大学学报,2007,47(3):433-438. 被引量:16

二级参考文献40

共引文献303

同被引文献94

引证文献13

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部