期刊文献+

基于Mel倒谱系数和矢量量化的昆虫声音自动鉴别 被引量:10

Automatic acoustical identification of insects based on MFCC and VQ
下载PDF
导出
摘要 为了给生产单位害虫管理的普通技术人员提供简便易操作的昆虫种类鉴别方法,本研究把人类语音识别领域的先进技术应用于昆虫识别,提出了一种新颖的昆虫声音自动鉴别方法,用声音参数化技术为昆虫声纹识别设计了一种简单易行的方案。声音信号经过预处理、分段得到一系列的声音样本,从声音样本提取Mel倒谱系数(MFCC),并用Linde-Buzo-Gray(LBG)算法对提取的MFCC进行矢量量化(VQ),所得码字作为声音样本的特征模型。特征参数之间的匹配用搜索最近邻的方法实现。本文方法在包含70种昆虫声音的库中进行了试验,取得了超过96%的识别率和理想的时间性能。试验结果证明了该方法的有效性。 This study aims to provide general technicians who manage pests in production with a convenient way to recognize insects. A simple and viable scheme to identify insect voiceprints automatically is introduced using a sound parameterization technique that dominates speaker recognition technology. The acoustic signal was preprocessed and segmented into a series of sound samples. Mel-frequency cepstrum coefficient (MFCC) was extracted from the sound sample,and a feature model was trained using Linde-Buzo-Gray algorithm to generate vector quantization (VQ) codebook from above MFCC. The matching for a test sample was completed by finding the nearest neighbour in all the VQ codebooks. The method was tested in a database with acoustic samples of 70 different insect sounds. The recognition rate above 96% was obtained,and an ideal time performance was also achieved. The test results proved the efficiency of the proposed method.
出处 《昆虫学报》 CAS CSCD 北大核心 2010年第8期901-907,共7页 Acta Entomologica Sinica
基金 国家高技术研究发展计划("863"计划)项目(2006AA10Z211) 中国林业科学研究院基本科研业务专项资金(CAFRIF200710)
关键词 昆虫 声音识别 MEL倒谱系数 LBG算法 矢量量化 Insects sound recognition Mel-frequency cepstrum coefficient (MFCC) Linde-Buzo-Gray (LBG) algorithm vector quantization (VQ)
  • 相关文献

参考文献14

  • 1Alexander R, 1957. Sound production and associated behavior in insects. The Ohio Journal of Science, 57(2) : 101 - 113. 被引量:1
  • 2Burtion DK, Shore JE, Burk JT, 1985. Isolated word speech recognition using multi-VQ code books. IEEE Trans. ASSP, 33 (4): 837 - 849. 被引量:1
  • 3Chesmore D, 2004. Automated bioacoustic identification of species. Annals of the Brazilian Academy of Sciences, 76 ( 2 ) : 435 - 440. 被引量:1
  • 4Chesmore ED, Nellenbach C, 2001. Acoustic methods for the automated detection and identification of insects. Acta Horticuhurae, 562 : 223 -231. 被引量:1
  • 5Drosopoulos S, Claridge M, 2005. Insect Sounds and Communication: Physiology, Behaviour, Ecology, and Evolution. Contemporary Topics in Entomology. CRC Press, Boca Raton, FL. 552 pp. 被引量:1
  • 6Ganchev T, Potamitis I, Fakotakis N, 2007. Acoustic monitoring of singing insects. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, IV. Honolulu. 721 -724. 被引量:1
  • 7韩萍.仓储物害虫声音的模式识别[J].计算机工程,2003,29(22):151-152. 被引量:11
  • 8He JL, Liu L, Palm G, 1999. A discriminative training algorithm for VQ-based speaker identification. IEEE Transactions on Speech and Audio Processing, 7 ( 3 ) : 353 - 356. 被引量:1
  • 9Linde Y, Buzo A, Gray RM, 1988. An algorithm for vector quantizer design. 1EEE Transactions on Communications, 28 ( 1 ) : 84 -95. 被引量:1
  • 10Mankin R, 2009. Sound Library. http://www. ars. usda. gov/pandp/ docs. htm? docid = 10919#albopictus. 被引量:1

二级参考文献4

  • 1张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994.. 被引量:81
  • 2杨行峻 迟惠生.数字语音信号处理[M].北京:电子工业出版社,1995.. 被引量:2
  • 3Zhen B,Proceedings ICSLP Ⅱ,2000年,933页 被引量:1
  • 4杨行峻,数字语音信号处理,1995年 被引量:1

共引文献83

同被引文献110

引证文献10

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部