摘要
考虑求解非线性方程组F(x)=0的迭代解法。从一族三阶局部收敛的迭代算法及一个具有四阶局部收敛性的迭代算法出发,推导出一族具有四阶收敛性的迭代算法。适当选取系数,可以得到一个具有较小计算量的四阶局部收敛性的新迭代算法,该迭代算法避免了计算F(x)的二阶Fréchet导数。
We considered solving the iterative solution of nonlinear equations.Proceeding from a family of third-order convergence method and a fourth-order convergence method,we obtained a family of fourth-order convergence method.By selecting certain coefficients,we obtained a fourth-order convergence method with low computational complexity,avoiding calculating the second Fréchet derivative.
出处
《中国传媒大学学报(自然科学版)》
2010年第3期71-73,共3页
Journal of Communication University of China:Science and Technology
关键词
非线性方程组
四阶收敛
迭代法
systems of nonlinear equations
a fourth-order convergence
convergence method