期刊文献+

逆向涡流发生器减小涡轮叶尖泄漏流的数值研究 被引量:3

Numerical Study in Reducing Tip Leakage Flow of Turbine Using Backward Vortex Generators
下载PDF
导出
摘要 逆向涡流发生器可以有效减小涡轮叶尖泄漏流,提高叶片周向载荷。对影响逆向涡流器减小泄漏流的几个关键因素进行了数值研究,结果表明:入流和出流孔径比增大,涡流器流量增加,对叶尖泄漏流的减小效果越好,孔径比2∶1时比孔径比1∶1时涡流器流量增加了24%,叶尖泄漏流量降低了0.8%,叶片周向载荷提高了1%;与叶片前缘布置涡流器相比,在叶片中后部布置时涡流器流量增大,叶片周向载荷提高;涡流器布置越密,涡流器总流量增加,布置33个涡流器比布置9个涡流器叶尖泄漏流量降低了1.6%,叶片周向载荷提高了2.7%;出流角越小,叶尖泄漏流量越小,叶片周向载荷越大,出流角30°时泄漏流量比60°时降低了1.2%,叶片周向载荷提高了约2%。 Backward vortex generators(BVGs) can reduce tip clearance leakage flow of the turbine and increase the circumferential load of the blade.Numerical study of several key factors of BVGs for reducing leakage flow is done.Results show that the mass of BVGs increases as the diameter ratio of the inflow and outflow holes grows,with more leakage flow reduced.Compared with the ratio of one,the mass of the BVGs increases by 24% and the mass of the leakage flow decreases by 0.8%,accompanied by 1% improvement of the circumferential load for the ratio of two.When BVGs are arranged in the middle and the rear parts of the blade tip,the mass of BVGs and circumferential load of blade increase,comparing with BVGs arranged in the front part.When the number of BVGs grows,total mass of BVGs increases.In the only 9 BVGs case,the mass of the leakage flow decreases by 1.6% and the circumferential load improves by 2.7% for the case of 33 BVGs.As the outflow angle becomes smaller,the mass of leakage flow decreases,thus improving the circumferential load.For 30° outflow angle,the mass of the leakage flow decreases by 1.2% and the circumferential load increases about 2%,comparing with 60° outflow angle.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第5期588-594,共7页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(50576034)资助项目
关键词 涡轮 泄漏流 逆向涡流发生器 孔径比 出流角 周向载荷 turbine leakage flow backward vortex generators diameter ratio of holes outflow angle circumferential load
  • 相关文献

参考文献12

  • 1Harris M M,Jones A C,Alexander E J.Miniature turbojet development at Hamilton sundstrand the TJ-50,TJ-120 and TJ-30 turbojets[R].AIAA 2003-6568,2003. 被引量:1
  • 2Lattime S B,Steinetz B M.Turbine engine clearance control systems:current practices and future directions[R].AIAA 2002-3790,2002. 被引量:1
  • 3Heyes F J G,Hodson H P,Dailey G M.The effect of blade tip geometry on the tip leakage flow in axial turbine cascade[J].Journal of Turbomachinery,1992,114:643-651. 被引量:1
  • 4Prakash C,Lee C P,Cherry D,et al.Analysis of some improved blade tip concepts[R].Nevada,USA:ASME,2005. 被引量:1
  • 5李伟,乔渭阳,许开富,罗华铃.涡轮叶尖镶嵌肋条对泄漏流场的影响[J].航空动力学报,2008,23(8):1523-1529. 被引量:11
  • 6杨佃亮,丰镇平.凹槽对动叶顶部流动和换热的影响[J].工程热物理学报,2007,28(6):936-938. 被引量:20
  • 7Auxier T A.Aerodynamic tip sealing for rotor blades:USA,5403158[P].1995-04-14. 被引量:1
  • 8Langston L S,Nice M L,Hooper R M.Three-dimensional flow within a turbine cascade passage[J].ASME Journal of Engineering for Power,1977,99:21-28. 被引量:1
  • 9Langston L S.Crossflows in a turbine cascade passage[J].ASME Journal of Engineering for Power,1980,102:866-874. 被引量:1
  • 10Moore J,Adhye R Y.Secondary flows and losses downstream of a turbine cascade[J].ASME Journal of Engineering for Gas turbines and Power,1985,107:961-968. 被引量:1

二级参考文献14

  • 1祁明旭,丰镇平.透平动叶顶部间隙流的表现形式及其对透平性能的影响[J].西安交通大学学报,2005,39(3):243-246. 被引量:25
  • 2Metzger D E, Bunker R S, Chyu M K. Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel. Journal of Heat Transfer, 1989, 111(1): 73-79 被引量:1
  • 3Kwak Jae Su, Han Je-Chin. Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade. Journal of Turbomachinery, 2003, 125(3): 669-677 被引量:1
  • 4Ameri A A, Steinthorsson E, Rigby D L. Effect of Squealer Tip on Rotor Heat Transfer and Efficiency. Journal of Turbomachienery, 1998, 120(4): 753 759 被引量:1
  • 5Timko L P. Energy Efficient Engine High Pressure Turbine Component Test Performance Report. NASA CR- 168289, 1984 被引量:1
  • 6Rao N M,Camci C. Axial turbine tip desensitization by injection from a tip trench. Part 1: Effect of injection mass flow rate[R]. ASME GT2004-53256. 被引量:1
  • 7Rao N M,Camci C. Axial turbine tip desensitization by injection from a tip trench. Part 2 : Leakage flow sensitivity to injection location[R]. ASME GT2004-53258. 被引量:1
  • 8Morris S C, Corke T C, VanNess D, et al. Tip clearance control using plasma actuators[R]. AIAA 2005-782. 被引量:1
  • 9Dey D. Aerodynamic tip desensitization in axial flow turbines[D]. Pennsylvania: The Pennsylvania State University, 2001. 被引量:1
  • 10Key N L, Arts T, Comparison of turbine tip leakage flow for flat tip and squealer tip geometries at high-speed conditions[R]. ASME GT2004-53979. 被引量:1

共引文献28

同被引文献29

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部