期刊文献+

神经网络在锅炉燃烧特性挖掘中的噪声适应性 被引量:1

Noise Adaptability of Neural Networks in Characteristics Mining of Boiler Combustion Process
下载PDF
导出
摘要 深入分析了BP、RBF网络以及分别基于BP和RBF网络的T-S模糊神经网络对数据噪声的适应性.首先比较分析了它们在不同白噪声环境下对一个虚拟的非线性多输入多输出(MI-MO)系统特性挖掘中的表现差异;随后比较分析了它们在数据严重被噪声污染情况下1台600MW电站锅炉燃烧特性挖掘中的表现差异.结果表明:必须重视对所选用挖掘工具的噪声适应性问题;4种神经网络的噪声适应能力由弱到强的排序是:BP网络、RBF网络、基于BP的T-S模糊神经网络、基于RBF的T-S模糊神经网络.对于像电站锅炉燃烧过程这类较复杂及噪声较严重的应用场合,建议选用基于RBF的模糊神经网络作为过程特性的挖掘工具. Adaptabilities to data noise of BP,RBF networks and T-S fuzzy neural networks based on BP,RBF respectively were thoroughly analyzed.First,the differences displayed in characteristics mining of a fictitious non-linear MIMO system under different levels of white noise were compared and analyzed.Then the differences displayed in characteristics mining of a 600 MW power boiler combustion process were compared and analyzed under the condition that the data were severely polluted by the noise.Results show that attention should be paid to the noise adaptability of the selected mining tools.The sequence of noise adap-(tability) of the four kinds of the neural networks from weak to strong is BP networks,RBF networks,T-S fuzzy neural networks based on BP and T-S fuzzy neural networks based on RBF.As for the complex and large noise condition,such as combustion process of power boiler,it is suggested that fuzzy neural networks based on RBF should be taken as the mining tool for process characteristics.
作者 黄仙 王辉
出处 《动力工程学报》 CAS CSCD 北大核心 2010年第10期767-771,共5页 Journal of Chinese Society of Power Engineering
关键词 电站锅炉 数据挖掘 噪声适应性 燃烧过程 模糊神经网络 utility boiler data mining noise adaptability combustion process fuzzy neural network
  • 相关文献

参考文献5

  • 1蒋以任.节能减排与可持续发展[J].动力工程,2010(1):1-4. 被引量:14
  • 2蔡坤宝,王成良,陈曾汉.产生标准高斯白噪声序列的方法[J].中国电机工程学报,2004,24(12):207-211. 被引量:15
  • 3王辉..基于模糊神经网络及粗糙集的数据深度挖掘应用研究[D].华北电力大学(北京),2010:
  • 4田景文,高美娟著..人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006:283.
  • 5袁曾任编著..人工神经元网络及其应用[M].北京:清华大学出版社;南宁,1999:373.

二级参考文献14

  • 1中国电力企业联合会.中国电力行业年度发展报告[M].北京:中国电力出版社,2009,7. 被引量:1
  • 2Hunter I W, Kearney R E. Generation of Random Sequences with Jointly Specified Probability Density and Autocorrelation Functions [J].Biol. Cybem, 1983, (47): 141-146. 被引量:1
  • 3Park S K, Miller K W. Random Number Generators Good Ones are Hard to Find [J]. Communications of the ACM, 1988, 31(10): 1192-1201. 被引量:1
  • 4L'Ecuyer P. Efficient. Portable Combined Random Number Generators [J]. Comms. of the ACM, 1988, 31(6 ): 742-774. 被引量:1
  • 5Knuth D E. The Art of Computer Programming Volume 2: Seminumerical Algorithms. 3d ed[M]. Eddison-Wesley, Reading Massachusetts,1998. 被引量:1
  • 6Box G E P, Muller M E. A Note on the Generation of Random Normal Deviates [J]. Ann. Math. Statist, 1958, 29: 610-611. 被引量:1
  • 7Marsaglia G, Bray T A. A Convenient Method for Generating Normal Variables [J]. SIAM Rev, 1964, (6): 260-264. 被引量:1
  • 8Marse K, Roberts S D. Implementing a Portable FORTRAN Uniform (0,1) Generator [J]. Simulation, 1983, 41(10): 135-139. 被引量:1
  • 9Hunter I W, Kearney R E. Generation of Stochastic Sequences for System Identification [C]. Proc. 35th Ann. Conf. Eng. Med. Biol,Philadelphia, PA, September 1982, (24): 72. 被引量:1
  • 10蔡坤宝,冯明志,杨泽林,李盛才,马登基.均匀分布随机数的一种综合评估法[J].重庆大学学报(自然科学版),1997,20(4):70-75. 被引量:5

共引文献27

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部