期刊文献+

BP神经网络在设备维修间隔预测中的应用研究 被引量:2

Application of BP Neural Network in Prediction of Equipment Maintenance Interval
下载PDF
导出
摘要 维修间隔是维修策略中最为主要的指标之一。传统的预防性维护方法通常运用统计学原理来预测维修间隔。这种传统维修思想的局限性在于缺乏灵活性,不能根据设备的实际情况动态调整时间间隔,容易造成维修不足或维修过剩。为了达到个性化维护的目的,本文采用BP神经网络来动态预测某个设备的维修间隔。其具体做法是:首先提取历史维修数据中的维修模式,再利用这些模式来训练BP神经网络,最后根据某个特定设备的维护模式来预测下一次的维修间隔。这种方法得到的维修间隔不仅考虑了过去维护因素对特定设备的影响,而且能得到较为优化的维修间隔。本文利用这种方法对真实的电梯维修数据进行了分析。实验证明,其预测平均模式相对误差为27.1%。这种动态的维修间隔可以为制定个性化的设备维护策略提供科学依据。 Maintenance interval is one of the most important index in maintenance strategy.In the traditional planned maintenance strategy,maintenance interval is often predicted by making use of statistical theory.This method lacks flexibility and can not adjust maintenance intervals according to the actual situation of the maintenance,it will easily lead to under-maintenance or over-maintenance.In order to carry out individual maintenance,in this paper,we use BP Neural Network to predict dynamically maintenance intervals.At first,we extract a lot of maintenance models that exist in the historical maintenance data,and then use these models to train the BP neural network,finally use the trained BP neural network to predict the maintenance interval according to the equipment maintenance model.This method considered the past maintenance factors and made maintenance interval better.The experiment shows that this method achieved 27.1% model average relative error.The dynamic maintenance interval makes the amendment of maintenance interval more scientific for individual strategy.
出处 《微计算机信息》 2010年第28期107-109,87,共4页 Control & Automation
基金 上海市国防科工办国防科研项目资助 上海市重点学科建设项目(J50103)
关键词 BP神经网络 维修间隔 维修策略 维修模式 BP neural network Maintenance interval Maintenance strategy Maintenance pattern
  • 相关文献

参考文献8

  • 1陈学楚主编..现代维修理论[M].北京:国防工业出版社,2003:303.
  • 2张小玉,蔡桂芳.BP神经网络在某型飞机发动机故障预测中的应用[J].机电产品开发与创新,2008,21(2):53-54. 被引量:4
  • 3Hagan M T , Demuth H B. Neural network design [M] .china machine press ,2002. 被引量:1
  • 4黎娅,郭江娜.基于数据挖掘的启发式抽样方法研究[J].微计算机信息,2009,25(12):216-217. 被引量:4
  • 5Christer , A.H, Lee ,C. Refining the delay-time-based PM in section Model with Non-negligible System Downtime Estimates of expected number of failures. [J], Int. Production Economics 2000, (67). 被引量:1
  • 6Staszewski W. Monitoring on-line integrated technologies for operational reliability-monitor [j], Air&Space Europe, 2000, 21 (4): 64-72. 被引量:1
  • 7Dekker R. Applications of maintenance optimization models: a review and analysis [J]. Reliability Engineering & Systems Safety, 1996, 51: 229- 240. 被引量:1
  • 8Philip A. Higgs. A SURVEY ON CONDITION MONITORING SYSTEMS IN INDUSTRY. Proceedings of: ESDA 2004: 7th Biennial ASME Conference Engineering Systems Design and Analysis July 19-22. 2004 Manchester. UK. 被引量:1

二级参考文献13

共引文献6

同被引文献14

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部