期刊文献+

基于稀疏模型的Bandelet图像去噪方法 被引量:4

Image Denoising Based on the Sparse Land Using Redundant Bandelet Transform
下载PDF
导出
摘要 提出一种基于Bandelet变换的图像去噪方法,以提高高噪声方差的图像去噪效果。Bandelet变换的核心是Lagrangian函数代价项的准确选取,本文从图像基追踪稀疏模型表示原理和图像阈值去噪方法的内在关系入手,重新定义Lagrangian函数,从而使图像稀疏去噪模型含义更明确,计算更简单。在去噪过程中,首先采用二维平移不变小波变换把图像分解为高频子带;然后用局部Bandelet块估计Bayes阈值确定Lagrangian函数的代价因子,从而对各个高频实施Bandelet化;最后对高频图像系数Bayes软阈值收缩实现图像去噪。国际标准中几何特征明显图像测试表明:在高斯白噪声的方差低于502时,本文方法的去噪效果和目前最好方法的效果相当;当噪声的方差等于或者高于502时,本文去噪方法效果更好。 To improve the efficiency of image denoising at the high Gaussian white noise level,a novel scheme is proposed by combining with the second redundant Bandelet transform version based on the Sparse Land-Basis Pursuit.Starting from the interrelation between Basis Pursuit denoising and threshold denoising with the shrinkage method,the Lagrangian cost function is renewed to minimize the influence of noises and have clearer meanings,and also lead to reduction of computation complexity.There are three steps in the image denoising process.Firstly,translation of invariant 2D wavelets is used to obtain the redundant Bandelet transform version.Secondly,during finding the best geometrical flow and optimal quadtree segments,the cost term of Lagrangian is confirmed by the Bayes estimator.Thirdly,Bayes soft-threshold shrinkage denoising in the bandelet transform domain is implemented.This leads to the state-of-the-art denoising performance,equivalent and sometimes surpassing recently published leading alternative denoising methods,especially as the noise variance is equal to and larger than 502.
出处 《铁道学报》 EI CSCD 北大核心 2010年第5期108-113,共6页 Journal of the China Railway Society
关键词 图像去噪 稀疏模型 冗余Bandelet变换 基追踪 Bayes阈值 image denoising the sparse land the redundant Bandelet transform basis pursuit Bayes estimator
  • 相关文献

参考文献17

  • 1DONOHO D L. Denoising by Soft-thresholding[J].IEEE Transaction on Information Theory, 1995, 41 : 613-627. 被引量:1
  • 2DONIHO D L, JOHNSTONE I. Ideal Spatial Adaptation Via Wavelet Shrinkage[J]. Biometr, 1994, 81 (12) 425- 455. 被引量:1
  • 3CHANG S G, YU B, MARTIN V. Adaptive Wavelet Thresholding for Image Denoising and Compression[J].IEEE Transactions on Image Processing, 2000,9 ( 9 ) : 1532- 1546. 被引量:1
  • 4PORTILLA J, STRELA V, WAINWRIGHT M J, et al. Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain [J]. IEEE Transactions on Image Pro- cessing,2003, 12(11) :1338-1351. 被引量:1
  • 5ELAD M, AHARON M. Image Denoising via Sparse and Redundant Representation over Learned Dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15 (12): 3736-3745. 被引量:1
  • 6DO M N, VETTERLI M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation [J].IEEE Transactions on Image Processing, 2005, 14 (12) : 2091-2106. 被引量:1
  • 7RAMIN ESLAMI, HAYDER RADHA. A New Family of Nonredundant Transactionsforms Using Hybrid Wavelets and Directional Filter Banks [J]. IEEE Transactions on Image processing, 2007,16(4) :1152-1167. 被引量:1
  • 8DING W,WU F,WU X, et al. Adaptive Directional Lifting-based Wavelet Transform for Image Coding[J]. IEEE Transactions on Image Processing, 2007,16(2):416-427. 被引量:1
  • 9PENNEC E L,MALLAT S. Sparse Geometric Image Representation with Bandelets[J]. IEEE Transactions on Image Processing, 2005.14(4): 423-438. 被引量:1
  • 10PEYRE G, MALLAT S. Surface Compression with Geometric Bandelets [Jl. ACM Transactions on Graphics, 2005,14(3) :601-608. 被引量:1

同被引文献35

  • 1刘卜,屈有山,冯桂兰,杨秀芳,相里斌.小波双线性插值迭代算法应用于光学遥感图像[J].光子学报,2006,35(3):468-472. 被引量:22
  • 2田伟,乔谊正,马志强.基于DWT的二次特征提取脱机中文签名鉴定[J].山东大学学报(工学版),2007,37(3):55-59. 被引量:3
  • 3Do M N, Vetterli M. The Contourlet Transform: an Efficient Directional Multiresolution Image Representation[J].IEEE Trans on Image Processing, 2005, 14(12) : 2091-2106. 被引量:1
  • 4da Cunha A L, Zhou Jianping, Do M N. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications[J]. IEEE Trans on Image Processing, 2006, 15(10) : 3089-3101. 被引量:1
  • 5Burt P J, Adelson E H. The Laplaeian Pyramid as a Compact Image Code[J]. IEEE Trans on Communication, 1983, 31 (4) : 532-540. 被引量:1
  • 6Do M N, Vetterli M. Framing PyramidsD]. IEEE Trans on Signal Processing, 2003, 51(9) : 2329-2342. 被引量:1
  • 7Lu Y M, Do M N. Multidimensional Directional Filter Banks and Surfacelets[J]. IEEE Trans on Image Processing, 2007, 16(4): 918-931. 被引量:1
  • 8张海霞.基于Horn-Schunck方法的光流计算模型.科技信息,2008,:220-222. 被引量:1
  • 9Lucas B D, Kanade T. An Iterative Image Registration Technique with an Application to Stereo vision[C]//Proc 7th Intel Joint Conf on Artificial Intelligence. Vancouver: Morgan Kaufmann Publishers, 1981: 674-679. 被引量:1
  • 10薛正亮.图像超分辨率重建技术研究[D].南京:南京航空航天大学,2008. 被引量:1

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部