期刊文献+

一致(F_d,ρ)-凸多目标半无限规划的Mornd-Weir型对偶性 被引量:2

Duality of Mond-Weir type for unifined(F_b,ρ)-convex multi-objective semi-infinite programming
下载PDF
导出
摘要 为了丰富非光滑优化的理论,在一致(Fb,ρ)-凸、一致(Fb,ρ)-伪凸和一致(Fb,ρ)-拟凸等一类非光滑非凸函数的基础上,利用反证法,得到了涉及此类广义凸性的一类非光滑多目标半无限规划的一些Mond-Weir型对偶性结果. To enrich the theory of nonsmooth programming,some Mond-Weir type duality results for a class of nonsmooth multi-objective semi-infinite programming involving those generalized convexity such as unifined (Fb,ρ)-convex,unifined(Fb,ρ)-pseudoconvex,unifined(Fb,ρ)-quasiconvex functions are obtained by using reduction to absurdity.
出处 《纺织高校基础科学学报》 CAS 2010年第2期160-164,169,共6页 Basic Sciences Journal of Textile Universities
关键词 非光滑 多目标半无限规划 MOND-WEIR型对偶 一致(Fb ρ)-凸函数 nonsmooth multi-objective semi-infinite programming Mond-Weir type duality unifined(Fb ρ)-convex function
  • 相关文献

参考文献12

二级参考文献20

共引文献16

同被引文献18

  • 1孙永忠,康开龙.非光滑广义F─凸规划问题的充分条件[J].工程数学学报,1996,13(1):117-121. 被引量:11
  • 2张庆祥,魏暹孙,张根耀.一类多目标半无限规划的最优性充分条件[C]∥中国运筹学会第六届学术交流会论文集.香港:Global-Link出版社,2000. 被引量:7
  • 3HANSON MA,MONDM. Necessaryandsufficient conditions in constrainted optimization[J].Mathimatical Program- ming,1987,37zS1-58. 被引量:1
  • 4RUEDANG, HANSON MA. Optimality crieria in mathimatical programming involving geneled invexity[J].JMath Anal Appl,1998,130z375-385. 被引量:1
  • 5BECTOR C R,SINGH C. B-vex function[J]. J Optim Theory Appl, 1991,71:237-253. 被引量:1
  • 6BECTOR C R,SUNF_JA S K,GUPTA S. Univex functions and univex nonlinear programming[C]//Proceedings of the Administrative Science Association of Canada, 1992 : 115-124. 被引量:1
  • 7MISHRA S K. On multiple-objective optimization with generalized univexity[J]. J Math Anal Appl, 1998,224z 131- 148. 被引量:1
  • 8ELSTER K H, THIERFELDER J. On cone approximations and generalized directional derivatives[C]//Nonsmooth Optimization and Related Topics, 1989,133-159. 被引量:1
  • 9Bector C. R., S. Chandra, I. Husian. Optimality Conditions and Duality in Subdifferentiable Multiobjective Fractional Programming[J]. J. Optim. Theory Appl., 1993,79( 1 ) : 105 - 125. 被引量:1
  • 10Liu J. C. , Y. Kimura, K. Tanaka. Three Types Dual Model for Minimax Fractional Programming [ J ]. Computers Math. Applic. , 1999,38(2) :143 - 155. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部