期刊文献+

Face Recognition via Adaptive Image Combination 被引量:1

Face Recognition via Adaptive Image Combination
原文传递
导出
摘要 Dimension reduction and manifold learning are the two most popular feature extraction methods.The two methods focus on spatial locality as a guiding principle to find a low-dimensional basis for describing high-dimensional data,but no bases or features are more spatially localized than the original image pixels.So,adaptive image combination is presented to represent a class by a combined sample.The combined sample is a linear combination of original samples in the same class.Adaptive image combination (AIC) find the best combination coefficients by minimizing the intrapersonal distance and maximizing the interpersonal distance.Experimental results show that AIC is effective. Dimension reduction and manifold learning are the two most popular feature extraction methods. The two methods focus on spatial locality as a guiding principle to find a low-dimensional basis for describing high-dimensional data, but no bases or features are more spatially localized than the original image pixels. So, adaptive image combination is presented to represent a class by a combined sample. The combined sample is a linear combination of original samples in the same class. Adaptive image combination (AIC) find the best combination coefficients by minimizing the intrapersonal distance and maximizing the interpersonal distance. Experimental results show that AIC is effective.
作者 于威威
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第5期600-603,共4页 上海交通大学学报(英文版)
基金 the Science and Technology Program of Shanghai Maritime University (Nos.20100095,20100068 and 20080474) the Innovation Program of Shanghai Municipal Education Commission (No.11ZZ143)
关键词 face recognition feature extraction adaptive image combination (AIC) face recognition, feature extraction, adaptive image combination (AIC)
  • 相关文献

参考文献11

  • 1TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71486. 被引量:1
  • 2KIM J, CHOI J, YI J, et al. Effective representation using ICA for face recognition robust to local distortionand partial occlusion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1977-1981. 被引量:1
  • 3BELHUMEUR P, HESANHA J, KREIGMAN D. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. 被引量:1
  • 4HE Xiao-fei, YAN Shui-cheng, Hu Yu-xia~, et al. Face recognition using laplacianfaces [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340. 被引量:1
  • 5TENENBAUM J, DE SILVA V, LANGFORD J. A global geometric framework for nonlinear dimension reduction [J]. Science, 2000, 290(5500): 2268-2269. 被引量:1
  • 6ROWEIS S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323-2326. 被引量:1
  • 7DONOHO D, GRIMES C. Hessian eigenmaps: New tools for nonlinear dimensionality reduction [C]// Proceedings of National Academy of Science, Washington D C, USA: National Academy of Science, 2003: 5591-5596. 被引量:1
  • 8ZHANG Zhen-yue, ZHA hong-yuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment [J]. SIAM Journal on Scientific Computing, 2004, 26(1): 313-338. 被引量:1
  • 9WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. 被引量:1
  • 10LEONARDIS A, BISCHOF H. Robust recognition using eigenimages [J]. Computer Vision and Image Understanding, 2000, 78(1): 99-118. 被引量:1

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部