期刊文献+

一类二阶差分方程动力学性质的证明 被引量:2

Proving of Dynamic Property for a Class of Second Order Difference Equations
下载PDF
导出
摘要 由文献[5],通过改变条件,可得到一类二阶有理差分方程的不同定理,由此讨论了不同条件下平衡解x是否为全局渐近稳定、局部渐近稳定或不稳定,并给出了不同的证明方法;最后证明了二周期解的存在性问题. Based on the monograph[5],through changing conditions,the different theorems of second order difference equations were obtained,that equilibrium point is whether locally asymptotically stable or globally asymptotically stable or unstable was discussed,and the different methods from the others were put forward.Finally,the existence of a period-two solution was proved.
作者 全卫贞
出处 《海南大学学报(自然科学版)》 CAS 2010年第3期218-221,共4页 Natural Science Journal of Hainan University
基金 国家自然科学基金项目(10861002)
关键词 差分方程 平衡解 全局渐近稳定 局部渐近稳定 排斥点 鞍点 二周期解 difference equation equilibrium point globally asymptotically stable locally asymptotically stable repeller saddle point period-two solution
  • 相关文献

参考文献10

二级参考文献26

  • 1Berenhaut K,Foley J,Stevic S. Quantitative bound for the recursive sequence yn+1 = A + yn/Yn-k [J]. Appl Math Lett, 2006,19 (9) : 983-989. 被引量:1
  • 2Berenhaut K,Stevic S. The behavior of the positive solutions of the difference equation xn= A + (xn-2/xn-1)^p[J]. J Differ Equations Appl, 2006,12 (9) : 909-918. 被引量:1
  • 3Kent C M,Radin M A. On the boundedness nature of positive solutions of the difference equation xn+1 = max { An/xn,Bn/xn-1}, with periodic parameters[J]. Dyn Contin Discrete Impuls Syst Ser B Appl Algorithms, 2003,11- 15. 被引量:1
  • 4Stevic S. On the recursive sequence xn+1 =α+xn^P/xn-1^p [J]. Discrete Dyn Nat Soc, 2007 : 9. 被引量:1
  • 5Stevic S. On the recursive sequence xn+1 = max { c, xn^p/xn-1^p}[J]. Appl Math Lett,2008,21(8):791-796. 被引量:1
  • 6Stevic S. The boundedness character of positive p solutions of the difference equation xn = A + xn^p-1/Xn-k^p[J]. Nonlinear Analysis, In press. 被引量:1
  • 7Kulenovic M R S, Ladas G. Dynamics of second order rational difference equations, with open problems and conjectures[J]. Chapman and Hall/CRC, 2002. 被引量:1
  • 8Stevo Stevic.Boundedness Character of a Class of Difference Equations[].Nonlinear Analysis.2009 被引量:1
  • 9M.R.S.Kulenovic,G.Ladas.Dynamics of Second Order Rational Difference Equations With Open Problems and Conjectures[]..2001 被引量:1
  • 10Wang-Tong Li,Hong-Rui Sun.Dynamics of a Rational Difference Equation[].Applied Mathematics and Computation.2005 被引量:1

共引文献8

同被引文献38

  • 1刘凌,苏燕辰,刘崇新.新三维混沌系统及其电路仿真实验[J].物理学报,2007,56(4):1966-1970. 被引量:45
  • 2LIAO X F,CHEN G R. Hopf bifurcation and chaos analysis of Chens system with distributed delays [ J] . Chaos,Soliton Frac-tals, 2005 (25) :197 -220. 被引量:1
  • 3CHUA L 0,K0MUR0 M, MATSUMOTO T. The double scroll family[ J] . IEEE Trans. Circuits and Systems-1,1986 ( 33 ):1072-1118. 被引量:1
  • 4DONG D W, HOPFIELD J J. Dynamic properties of neural networks with adapting synapses[ J] . Network: Comp. NeuralSys, 1992(3) :267 -283. 被引量:1
  • 5LI C G, CHEN G R. Coexisting chaotic attractors in a single neuron model with adapting feedback synapse[ J] . Chaos, Soli-tons Fractals, 2005 ( 23) :1599 - 1604. 被引量:1
  • 6KURTEN K E,CLARK J W. Chaos in neural systems[J] Phys. Let. A,1986(114) :413 -418. 被引量:1
  • 7KEPLER T B, DATT S, MEYER R B,et al. Chaos in a neural network circuit. [ J] . Phys. D.,1990,46(3) :449 -457. 被引量:1
  • 8ZOU F, NOSSEK J A. Bifurcation and chaos in cellular neural network[ J] . IEEE Trans. Circ. Sys. I,1993 (40) :166 -172. 被引量:1
  • 9LI C G,YU J B, LIAO X F. Chaos in a three-neuron hysteresis Hopfleld-type neural network [ J] . Phys. Lett. A, 2001(285) :368 -372. 被引量:1
  • 10LI C G,CHEN G R,LIAO X F. Hopf bifurcation and chaos in tabu learning neuron models[ J] Int. J. Bifur. Chaos, 2005(15):2633 -2642. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部