期刊文献+

弱克尔介质好腔中纠缠相干态光场驱动下的贝尔态原子系统的保真度 被引量:3

Fidelities of quantum states in system of two-mode entangled coherent field interacting with atoms in Bell states in Kerr thin medium for fine cavity
下载PDF
导出
摘要 用全量子理论方法,研究弱克尔介质好腔中Bell态原子与纠缠相干态光场相互作用系统的保真度。结果表明,对理想腔,若原子初始处于相干保持态,腔场初态的平均光子数很小,保真度始终等于1,随着平均光子数的增加,保真度单调衰减;若处于其余Bell态之一,腔场初态的平均光子数很小,保真度在0~1之间作周期性振荡,随着平均光子数的增加,保真度的振荡频率增大,振幅减小。对好腔,若原子初始处于相干保持态,系统保真度呈指数单调衰减;若处于其余Bell态之一,保真度呈指数振荡衰减,且随着平均光子数的增加,保真度的振荡频率增大。 The fidelities of quantum states in the system of two-mode entangled coherent field interacting with atoms in the Bell states in Kerr thin medium are investigated by means of full quantum theory. The results indicate that for ideal cavity, the fidelity of the system always equals to that for the coherent maintenance state at original time when average photon number of cavity fields is very small. When average photon number of cavity fields increases, the fidelity of the system is humdrum attenuation. The fidelity of the system oscillates periodically from 0 to 1 for other Bell states at original time when average photon number of cavity fields is very small. When average photon number of cavity fields increases, oscillatory frequency of the fidelity increases and amplitude decreases. For fine cavity, the fidelity is humdrum exponent attenuation for the coherent maintenance state at original time. The fidelity is oscillatory exponent attenuation for other Bell states at original time, and when average photon number of cavity fields increases, oscillatory frequency of the fidelity increases
作者 章国顺
出处 《量子电子学报》 CAS CSCD 北大核心 2010年第5期586-595,共10页 Chinese Journal of Quantum Electronics
基金 国家青年自然科学基金项目(10704001) 安徽省自然科学基金项目(070412060) 安徽高校省级自然科学研究重点项目(kj2010123)
关键词 量子光学 保真度 全量子理论 BELL态 弱克尔介质 好腔 quantum optics fidelity quantum theory Bell states Kerr thin medium fine cavity
  • 相关文献

参考文献22

  • 1Einstein A,Podolsky B,Rosen N,et al.Can quantum-mechanical description of physical reality be considered complete?[J].Phys.Rev.,1935,47(10):777-780. 被引量:1
  • 2Schrodinger E.Die Gegenwartige situation in der Qunteunme chanik[J].Naturwissenschaften,1935,23:807-812,823-828,844-849. 被引量:1
  • 3Braunstein S L,Kimble H J.Teleportation of continuous quantum variables[J].Phy.Rev.Lett.,1998,80(4):869-872. 被引量:1
  • 4Bennett C H,Brassard G,Crepean C,et al.Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J].Phys.Rev.Lett.,1993,70(13):1895-1899. 被引量:1
  • 5Bouwmeester D,Pan J W,Mattle K,et al.Experimental quantum teleportation[J].Nature,1997,390:575-579. 被引量:1
  • 6Furusawa A,Sorensen J L,Braunstein S L,et al.Unconditional quantum teleportation[J].Science,1998,282:706-709. 被引量:1
  • 7Ekert A K.Quantum cryptography based on Bell's theorem[J].Phys.Rev.Lett.,1991,67(6):661-663. 被引量:1
  • 8Ponomaredko S A,Wolf E.Correlations in open quantum systems and associated uncertainty relations[J].Phys.Rev.A,2001,63:62106. 被引量:1
  • 9Zheng S B,Guo G C.Teleportation of super positions of macroscopic of a cavity field states[J].Phys.Lett.A,1997,236:180-182. 被引量:1
  • 10Sleator T,Weinfurter H.Realizable universal quantum logic gates[J].Phys.Rev.Lett.,1995,74:4087-4090. 被引量:1

二级参考文献150

共引文献71

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部