摘要
This paper analyzes a finite-buffer renewal input single server discrete-time queueing system with multiple working vacations. The server works at a different rate rather than completely stopping working during the multiple working vacations. The service times during a service period, service time during a vacation period and vacation times are geometrically distributed. The queue is analyzed using the supplementary variable and the imbedded Markov-chain techniques. We obtain steady-state system length distributions at pre-arrival, arbitrary and outside observer's observation epochs. The analysis of actual waiting-time distribution and some performance measures are carried out. We present some numerical results and discuss special cases of the model.
This paper analyzes a finite-buffer renewal input single server discrete-time queueing system with multiple working vacations. The server works at a different rate rather than completely stopping working during the multiple working vacations. The service times during a service period, service time during a vacation period and vacation times are geometrically distributed. The queue is analyzed using the supplementary variable and the imbedded Markov-chain techniques. We obtain steady-state system length distributions at pre-arrival, arbitrary and outside observer's observation epochs. The analysis of actual waiting-time distribution and some performance measures are carried out. We present some numerical results and discuss special cases of the model.