摘要
目的求解n维空间中m个球的最小闭包问题。方法利用光滑函数将该问题转化为无约束非光滑凸优化问题。结果给出了解该优化问题的有限记忆BFGS算法。结论数值结果表明该算法求解高维空间中球的最小闭包问题的可行性及有效性。
Aim In order to solve the smallest enclosing ball of m balls in n dimensions.Methods Exploiting a new smoothing function and converting the smallest enclosing ball problem into a smooth unconstrained convex optimization problem equivalently.Results A limited memory BFGS algorithm for the solution of unconstrained problem are derived.Conclusion Some numerical results indicate the feasibility and efficiency of the proposed algorithm for the smallest enclosing ball problem in high dimensions.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第2期210-214,共5页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(60603098)
关键词
最小闭包球
非光滑优化
光滑逼近
有限记忆BFGS算法
the smallest enclosing ball
non-smoothing optimization
smoothing approximation
limited-memory BFGS algorithm