期刊文献+

拖移圆形喷灌机转移作业点过程中的影响因素

Effect Factors on Dragged Center Pivot Irrigation System in Drag Operation Point Process
下载PDF
导出
摘要 拖移圆形喷灌机数量在不断增加,但在拖移过程中存在诸多影响因素未能从理论上加以阐明。对拖移过程的受力情况进行分析,以机组不发生侧翻为约束条件,建立了机组从一个作业点拖移到另外作业点的拖移路径中相邻跨体夹角α的约束不等式数学模型,并推导出拖移路径的最小曲率半径;同理,建立了坡度角β的约束不等式数学模型。在此基础上,推导出在α和β共同作用下的机组不侧翻约束不等式,通过对实际情况进行简化,得出跨体夹角不大于5°的情况下,通过坡度最大值不能超过10°的简易结论。在风力超过10 m/s的情况下不宜进行拖移,在此过程中,行走速度不宜超过2 km/h。 Now,more and more center pivot irrigation systems have been put into service.But what are the effect factors in drag operation,and how to explain those in theory? In this paper,based on force analysis through the drag process,some mathematics models were established,and then the minimal radius of curvature of walk route and tower turnover constraint condition under included angle α and slope angle β combined action are deduced.And it is suggested that when α less was than 5 degree,the β muse be no more than 10 degree in technical application.The research results provide some theory support for users and designer in center pivot irrigation drag application.
出处 《节水灌溉》 北大核心 2010年第9期72-74,77,共4页 Water Saving Irrigation
基金 国家高技术研究发展计划("863"计划)资助项目(2006AA100211)
关键词 拖移 圆形喷灌机 受力分析 数学模型 dragged center pivot irrigation system force analysis mathematical model
  • 相关文献

参考文献6

二级参考文献13

  • 1韩文霆,吴普特,冯浩,杨青.非圆形喷洒域变量施水精确灌溉喷头综述[J].农业机械学报,2004,35(5):220-224. 被引量:20
  • 2韩文霆,吴普特,杨青,冯浩.喷灌水量分布均匀性评价指标比较及研究进展[J].农业工程学报,2005,21(9):172-177. 被引量:72
  • 3韩文霆,吴普特,冯浩,杨青.变量喷头实现均匀喷灌的研究[J].农业工程学报,2005,21(10):13-16. 被引量:21
  • 4水利部国际合作司水利部农村水利司等编译.美国国家灌溉工程手册[M].北京:中国水利水电出版社,1998. 被引量:3
  • 5Christiansen J E. Irrigation by sprinkling[R]. California Agricultural Experiment Station, Sacramento, California October, 124,1942. 被引量:1
  • 6Heerman D F and Hein P R. Performance characteristics of self- propelled center--pivot sprinkler irrigation systems[J]. Transactions of the ASAE. 1968,11 ( 1 ) : 11- 15. 被引量:1
  • 7Criddle W D, Davis, Sterling, Pair, Claude H, Shockley, Dell G, Methods for evaluating irrigation system [M]. USDA Soil Conservation Service Handbook No. 82,1956. 被引量:1
  • 8Wilcox J C, Swailes G E. Uniformity of water distribution by some undertree orchard sprinklers[J]. Scientific Agriculture, 1947,27(11) :565-583. 被引量:1
  • 9Strong W. Christiansen's coefficient of uniformity, Pearsoffs variability coefficient and standard deviation [R]. Personal correspondence of January. 1955. 被引量:1
  • 10Beale J G. Distribution uniformity of sprinkler irrigation systems [Master Thesis][D]. University of New South Wales, Kensing ton, N. S. W. , Australia, 1964. 被引量:1

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部