期刊文献+

双相介质地震波场数值模拟的迭积微分算子及其PML边界条件 被引量:4

Two-phase media seismic wave simulation by the convolutional differentiator method and the PML absorbing boundary
下载PDF
导出
摘要 将基于计算数学中F0rsyte广义正交多项式的迭积微分算子引入到地震波动方程的一阶速度——应力方程的空间微分运算中去,并采用时间错格有限差分算子替代传统的差分算子以匹配高精度的空间迭积微分算子,从而发展一种全新的地震波场正演模拟方法,来解决复杂非均匀介质模型中的波场传播问题.为了大幅衰减人工边界引起的反射,本文将完全匹配层(Perfectly Matched Layer,PML)吸收边界条件引入到所构建的方法中,以解决迭积微分算子法的边界问题.以二维波动方程为例,用迭积微分算子法实现了双相介质的地震波场正演模拟,模拟结果表明,双相介质模型较好地解释了合流体孔隙特性.同时也表明迭积微分算子法是一种非常实用、有效的数值模拟方法. The key issue in this paper is to introduce the convolutional differentiator based on Forsyte generalized orthogonal polynomial in mathematics into the spatial differentiation of the first velocity-stress equation. To match the high accuracy of the spatial differentiator, this method in the time coordinate adopts staggered grid finite difference instead of conventional finite difference to model seismic wave propagation in heterogeneous media. To attenuate the reflection artifacts caused by the artificial boundary, the Perfectly Matched Layer (PML) absorbing boundary is also considered in the method to deal with the boundary problem due to its advantage of automatically handling large-angle emission. This paper constructs the constitutive relationship for two-phase media, and further derives the first-order velocity-stress equation for 2D two-phase media. Numerical modeling using the CFPD method is carried out in the above-mentioned media. The results modeled in Blot two-phase media can better explain the liquid pore characteristics and can also prove that CFPD is a useful numerical tool to study the wave propagation in complex media.
出处 《地球物理学进展》 CSCD 北大核心 2010年第4期1180-1188,共9页 Progress in Geophysics
基金 国家自然科学基金项目(40874024) 天津市地震安全基础工程海上地震观测试验系统分项目联合资助
关键词 地震波 数值模拟 迭积微分算子 PML边界条件 双相介质 seismic wave, numerical simulation, convolutional forsyte polynomial differentiator, PML absorbing boundary, blot two-phase media
  • 相关文献

参考文献26

二级参考文献329

共引文献385

同被引文献89

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部