期刊文献+

神经元动作电位模式分类的小波时频分析方法 被引量:2

Wavelet time-frequency analysis of neural spike sorting
下载PDF
导出
摘要 对神经元动作电位进行模式分类是植入式脑机接口研究的前期关键问题。考虑到来自不同神经元的动作电位在时域或频域特征上的相似性,引入小波分析在时频域上对动作电位进行特征描述。首先以db、sym、bior三类小波函数系为例,分别获取了动作电位的高维小波系数特征;然后对特征分量进行非正态分布特性的KS检验,以实现特征降维;最后通过非监督的K均值方法完成动作电位聚类。实验结果表明:在神经信号噪声水平为0.05dB、0.1dB和0.15dB时,各小波基的分类性能略有不同。其中sym5小波性能突出,动作电位错分率基本稳定在1.21%~1.81%。最后与主成分分析法(PCA)进行了分类性能的比较,进一步证实了小波时频分析方法(sym5小波)在抗干扰性和稳定性方面的优势。 The separation of spikes is a key problem for invasive brain-computer interface. To deal with the similarity of spike temporal profile and frequency feature, a method was proposed to represent spike feature using wavelet analysis technique. First, wavelet functions, such as db, sym, bior, were used as base function to achieve high-dimension wavelet coefficient as spike feature. Next, in order to decrease the dimension of spike feature, Kolm0gorov-Smirnov (KS) test was performed to select a few coefficients. After that, unsupervised K-means clustering was calculated to complete spike sorting. The experimental results show that, when the neural signal is at the noise level 0.05 dB, 0. 1 dB, 0. 15 dB, sorting performance varies slightly while changing wavelet base functions. In all of these functions, sym5 wavelet outperforms the other five wavelet functions in terms of misclassified rate of spikes (between 1. 21% ~ 1. 81%). Compared with Principal Component Analysis (PCA), the proposed method based on sym5 wavelet performs better even for the heavy noise spike data.
出处 《计算机应用》 CSCD 北大核心 2010年第10期2723-2726,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(30770685) 浙江省新苗人才计划项目(2007G60G2040006)
关键词 电位分类 小波时频分析 小波基函数 KS检验 spike sorting wavelet time-frequency analysis wavelet base function Kolmogorov-Smirnov (KS) test
  • 相关文献

参考文献8

  • 1LEBEDEV M, NICOLELIS M. Brain-machine interfaces: Past, present and future [ J]. Trends in Neurosciences, 2006, 29 (9) : 536 - 546. 被引量:1
  • 2BROWN E, KASS R, MITRA P. Multiple neural spike train data analysis: State-of-the-art and future challenges [ J]. Nature Neuroscience, 2004, 7(5): 456-461. 被引量:1
  • 3丁伟东,袁景淇,梁培基.多电极锋电位信号检测与分类方法研究[J].仪器仪表学报,2006,27(12):1636-1640. 被引量:13
  • 4QUIROGA R, NADASDY Z, BEN-SHAUL Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering [J]. Neural Computation, 2004, 16(8): 1661-168. 被引量:1
  • 5LETELIER J, WEBER P. Spike sorting based on discrete wavelet transform coefficients [ J]. Journal of Neuroscience Methods, 2000, 101(2): 93-106. 被引量:1
  • 6EYAL H, RONEN S, ESI-IEL B. A method for spike sorting and detection based on wavelet packet and Shannon's mutual information [J]. Journal of Neuroscience Methods, 2002, 117(1) : 1 - 12. 被引量:1
  • 7崔华..小波分析及其在信号处理中的应用[D].西安电子科技大学,2005:
  • 8查显杰,傅容珊,戴志阳,刘斌,邵志刚,薛霆虓.小波基函数选择对SAR干涉图去噪的影响[J].遥感信息,2008,30(2):17-20. 被引量:13

二级参考文献42

  • 1汪鲁才,王耀南,毛六平.基于小波变换和中值滤波的InSAR干涉图像滤波方法[J].测绘学报,2005,34(2):108-112. 被引量:39
  • 2何儒云,王耀南.一种基于小波变换的InSAR干涉图滤波方法[J].测绘学报,2006,35(2):128-132. 被引量:13
  • 3RIEKE F,WARLAND D,STEVENCK D R V,et al.Spike:Exploring the neural code[M].Cambridge,MA:The MIT Press,1996. 被引量:1
  • 4WELSH J P,SCHWARZ C.Multielectrode recording from the cerebellum[J].Methods for Neural Ensemble Recordings,1999,5:79-100. 被引量:1
  • 5BANKMAN I N,JANSELEWITZ S J.Neural waveform detector for prosthesis control[C].Proc.17th IEEE EMBS,1995:963-964. 被引量:1
  • 6HARRIS K D,HENZE D A,CSICSVARI J,et al.Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements[J].Neurophysiol,2000,84:401-414. 被引量:1
  • 7BANKMAN I N,JOHNSON K O,SCHNEIDER W.Optimal detection,classification,and superposition resolution in neural waveform recordings[J].IEEE Trans.Biomed.Eng.,1997,40(8):836-841. 被引量:1
  • 8CHOI J H,JUNG H K,KIM T.A new action potential detector using the MTEO and its effects on spike sorting systems at low signal-to-noise ratios[J].IEEE Trans.Biomed.Eng.,2006,53(4):738-746. 被引量:1
  • 9NENADIC Z,BURDIC J W.Spike detection using the continuous wavelet transform[J].IEEE Trans.Biomed.Eng.,2003,52(1):74-87. 被引量:1
  • 10SONG M Z,WANG H B.A spike sorting framework using nonparametric detection and incremental clustering[J].Neurocomputing,2006,69:1380-1384. 被引量:1

共引文献24

同被引文献26

  • 1丁伟东,袁景淇,梁培基.多电极锋电位信号检测与分类方法研究[J].仪器仪表学报,2006,27(12):1636-1640. 被引量:13
  • 2LEBEDEV M,NICOLELIS M.Brain-machine interfaces:past,present and future[J].Trends in Neurosciences,2006,29(9):536-546. 被引量:1
  • 3BROWN E,KASS R,MITRA P.Multiple neural Spike train data analysis:state-of-the-art and future challenges[J].Nature Neuroscience,2004,7(5):456-461. 被引量:1
  • 4LEWICKI M S.A review of methods for Spike sorting:The detection and classification of neural action potentials[J].Network:Computation Neural System,1998,9(4):53-78. 被引量:1
  • 5WELSH J P,SCHWARZ C.Multi-electrode recording from the cerebellum[J].Methods for Neural Ensemble Recordings,1999,5:79-100. 被引量:1
  • 6LETERLIER J,WEBER P.Spike sorting based on discrete wavelet transform coefficients[J].Journal of Neuroscience Methods.2000,101(2):93-106. 被引量:1
  • 7BARHILLEL A,SPIRO A,STARK E.Spike sorting:Bayesian clustering of non-stationary data[J].Journal of Neuroscience Methods,2006,157(2):303-316. 被引量:1
  • 8SAMAR V J.Wavelet analysis of neuroelectric waveforms[J].Brain Language,1999,66(1):1-6. 被引量:1
  • 9SNIDER R K.Classification of non-stationary neural signals[J].Journal of Neurescience Methods,1998,84(1-2):155-166. 被引量:1
  • 10LEWICKI M S.Bayesian modeling and classification of neural signals[J].Neural Computation 1994,6:1005. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部