期刊文献+

短语音噪声环境下说话人识别特征提取 被引量:2

Recognition feature extraction based on little speech data for speaker under noisy conditions
下载PDF
导出
摘要 为了使说话人识别系统在语音较短和存在噪声的环境下也具有较高的识别率,基于矢量量化识别算法,对提取的特征参数进行研究。把小波变换与美尔频率倒谱系数(MFCC)的提取相结合,并将改进后的特征与谱质心特征进行了组合,建立了一种美尔频率小波变换系数+谱质心(MFWTC+SC)的新的组合特征参数。经实验表明,该组合特征可以有效地提高说话人识别系统的性能。 To improve the performance of speaker recognition in the condition of noise and little speech data, feature parameters were studied based on the Vector Quantization (VQ). An improved feature named WFWTC was proposed by combining extraction of Mel Frequency Cepstrum Coefficient (MFCC) with wavelet transform. After that, a new feature was established based on WFWTC and Spectral Centroid (SC). The experimental results show that the feature is feasible for speaker identification.
出处 《计算机应用》 CSCD 北大核心 2010年第10期2712-2714,共3页 journal of Computer Applications
基金 山东省自然科学基金资助项目(Y2007G44 Y2007G62)
关键词 短语音 说话人识别 噪声环境 组合特征 little speech data speaker recognition noisy condition combined feature
  • 相关文献

参考文献18

二级参考文献49

共引文献49

同被引文献26

  • 1徐向华,朱杰,郭强.决策树结构对说话人自适应影响的研究[J].声学学报,2006,31(1):42-47. 被引量:3
  • 2Xiaodan Z, Xi Z, Huang T Set al. Feature analysis and selection for acoustic event detection. Proceedings of ICASSP, 2008:17-20. 被引量:1
  • 3Dennis J, Tran H D, Chng E S. Image feature represen- tation of the subband power distribution for robust sound event classification. IEEE Transactions on Audio, Speech and Language Processing, 2013; 21(2): 367-377. 被引量:1
  • 4Ziqiang S, Jiqing H, Tieran Z et al. Audio segment clas- sification using online learning based tensor representa- tion feature discrimination. IEEE Transactions on Audio, Speech and Language Processing, 2013; 21(1): 186-196. 被引量:1
  • 5Nishimura J, Kuroda T. Versatile recognition using haar- like feature and cascaded classifier. IEEE Sensors Journal, 2010; 10(5): 942-951. 被引量:1
  • 6Asbai N, Amrouche A, Debyeche M. Performances Evalu- ation of GMM-UBM and GMM-SVM for Speaker Recog- nition in Realistic World. Neural Information Processing, PT II,. 2011; 7063(2): 284-291. 被引量:1
  • 7Huo C B, Zhang C J. The research of speaker recognition based on GMM and SVM. Proceedings of ICSSE, 2012: 373-375. 被引量:1
  • 8Liu M, Huang Z. Multi-feature fusion using multi-gmm supervector for svm speaker verification. Proceedings of CISP, 2009:4. 被引量:1
  • 9Ajmera P K, Holambe R S. Fractional Fourier transform based features for speaker recognition using support vec- tor machine. Computers & Electrical Engineering, 2013; 39(2): 550-557. 被引量:1
  • 10Sahidullah M, Saha G. A novel windowing technique for el- ficient computation of mfcc for speaker recognition. IEEE Signal Processing Letters, 2013; 20(2): 149-152. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部