期刊文献+

基于几何活动轮廓与分形盒维数的图像分割 被引量:1

Image segmentation based on geometric active contour and fractional box-counting dimension
下载PDF
导出
摘要 针对传统几何活动轮廓(GAC)模型不能实现自适应分割,且容易出现边界泄漏和演化时间较长的缺点,提出了一个基于GAC与分形盒维数的图像分割算法。该算法结合了图像信息(图像分形盒维数)和演化曲线的位置,用与演化曲线内外区域分盒维数相关的演化速度v(D)代替传统GAC模型中的常量速度v。实验结果表明该算法可以使演化曲线根据其位置自适应地向内或者向外运动,减少了分割时间,并且在一定程度上减少了边界泄漏。 An image segmentation algorithm based on Geometric Active Contour(GAC) model and fractional box-counting dimension is presented in order to solve the problem that tradition GAC model can't segment adaptively and this kind of model usually leaks boundary and needs long time's evolution.This algorithm combines image information (fractional box-counting dimension of image) and curve location.In this algorithm, evolution speed v(D) which depends on fractional box-counting dimension of inward and outward area's of curve replaced constant speed v in tradition GAC model.Experimental results show that the proposed algorithm is feasible, reduces segmentation time and reaches an obvious effect in terms of boundary leaking.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第27期191-194,共4页 Computer Engineering and Applications
关键词 几何活动轮廓模型 图像分割 分形盒维数 边界泄漏 geometric active contour model image segmentation fractional box-counting dimension boundary leaking
  • 相关文献

参考文献8

  • 1Lee S H,Seo J K.Level set-basod bimodal segmentation with stationary global minimum[J].IEEE Trans on Image Processing,2006,15(9):2843-2852. 被引量:1
  • 2何传江,唐利明.几何活动轮廓模型中停止速度场的异性扩散[J].软件学报,2007,18(3):600-607. 被引量:23
  • 3Malladi R,Sethian J A,Vemuri B C.Shape modeling with float propagation:a level set approach[J].IEEE Trans Pattern Anal Math Intell,1995,17:158-175. 被引量:1
  • 4Westin C F,Lorigo F M,Fangeras O,et al.Segmentation by adaptive geodesic active contours[J].Medical Image Computing and Computer Assisted Intervention,2000:266-275. 被引量:1
  • 5唐利明,何传江,申小娜.几何活动轮廓模型的多尺度扩散分割算法[J].计算机辅助设计与图形学学报,2007,19(5):661-666. 被引量:9
  • 6Caselles V,Catte F,CoIl T,et al.Geodesic active contours[J].Number Math,1993,66:1-31. 被引量:1
  • 7Feng J.Fractional fractal geometry for image proeessing[D].USA:Northwestern University,2000. 被引量:1
  • 8Siddiqui K,Laoriere Y B,Tannenbaum A,et al.Area and length minimizing flows for shape segmentation[J].IEEE Trans Image Processing,1998,7:433-443. 被引量:1

二级参考文献11

共引文献26

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部