期刊文献+

基于MCSA的笼型异步电动机转子断条诊断 被引量:1

Diagnosis on Broken Bar of Squirrel-cage Asynchronous Motor Based on MCSA
下载PDF
导出
摘要 研究笼型异步电动机在转子断条时的运行情况,提出有效的检测方法,以便在电机转子只出现轻微故障时及时检测出故障,采取有效措施。MCSA技术采用时域加窗和傅里叶变换的方法,对电机电流信号进行频谱分析,并对故障频率段局部细化,提取定子电流中故障特征频率分量来诊断电动机是否存在转子断条故障。仿真结果表明本方法可以有效消除频率泄漏和栅栏现象,准确检测出故障分量。 Operation of squirrel-cage asynchronous motor when broken bar occurs is studied. An effective detecting method is put forward to find out the fault even if it is very slight, so measures can be taken in time. MCSA adopts time-windowing and Fourier transform to analyze motor current signature frequency components. Besides, fault frequency band is subdivided locally to get stator current fault characteristic frequency component which can be used to diagnose rotor broken bar. The simulation result shows that it effectively eliminates the frequency leak and barrier phenomena, and detects fault component exactly.
出处 《大电机技术》 北大核心 2010年第5期40-43,共4页 Large Electric Machine and Hydraulic Turbine
关键词 断条 MCSA 频谱 时域加窗 局部细化 broken bar MCSA frequency spectrum time-windowing local subdivision
  • 相关文献

参考文献5

二级参考文献27

  • 1[1]Benbouzid M E H,Nejjari.Induction motor asymmetrical faults detection using advanced signal processing techniques[J].IEEE Trans.on EC 1999,14(2):147~152. 被引量:1
  • 2[3]G.B.Kliman,J.Stein.Methods of motor current signature analysis [J].Electric machine & power systems.1992,20(5) :463 ~ 474. 被引量:1
  • 3[4]Fiorenzo Filippetti et al.,Neual Networks Aided Online Diagnostics of Induction Motor Rotor Fault[J].IEEE Trans.on Ind Apple .Vol.31 ,July/August ,1995:892~899. 被引量:1
  • 4[5]F.Filippetti,G.Franceschini,C.Tassoni,P.Vas.AI techniques in induction machines diagnosis including the speed ripple effect[C].In Conf.Rec.IEEE-IAS Annu.Meeting,San Diego.CA Oct.6-10,1996:655~662. 被引量:1
  • 5Yazici,Kliman.''An adaptive statistical time-frequency method for detection of broken bars and bearing faults in motors using stator current'' [J].IEEE IA,Vol.35,No.2,1999,pp442-452. 被引量:1
  • 6H.R.Martin,F.Honarvar.''Application of Statistical Moments to Bearing Failure Detection''[J].Applied Acoustics,Vol.44,pp.67-77,1995. 被引量:1
  • 7R.B.W.Heng,M.J.M.Nor.''Statistical Analysis of Sound and Vibration Signals for Monitoring Rolling Element Bearing Condition'' [J].Applied Acoustics,Vol.53,No.1-3,pp.211-226,1998. 被引量:1
  • 8Levent Eren and Michael J.Devaney.''Bearing Damage Detection via Wavelet Packet Decomposition of the Stator Current''[J].IEEE Instrumentation and Measurement Technology Conference Anchorage,AK,USA,21-23 May 2002. 被引量:1
  • 9William T.Thomson.''ON-LINE MCSA TO DIAGNOSE SHPRTED TURNS IN LOW VOLTAGE STATOR WINDING OF 3-PHASE INDUCTION MOTORS PRIOR TO FAILURE'' [J].Thomson,W.T.Electric Machines and Drives Conference,2000.IEMDC 2001.IEEE International,2001 Page (s):891-898. 被引量:1
  • 10M.Arkan etc.''Online stator fault diagnosis in induction motors''[J].IEE Proc.-Electr.Power appl.,Vol.148,No.6,November 2001. 被引量:1

共引文献28

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部