期刊文献+

一种改进的和声搜索算法

An Improved Harmony Search Algorithm
下载PDF
导出
摘要 针对和声搜索算法在处理复杂函数优化问题时容易陷入局部最优、收敛精度低的缺点,提出了一种改进的和声搜索算法,不同于已有的HS算法.整个和声记忆库被划分为一些小的子和声记忆库,每个子库适时地更新内部信息,然后将各子库中的最优解构成一个较优记忆库并进行搜索,这些子记忆库通过重组周期被反复重组,信息在这些子库中被交换,在算法的最后搜索阶段,为了表现一个更好的局部搜索能力,所有和声形成一个和声记忆库.同目前提出的一些HS算法相比,新算法有更好的优化性能. The Harmony Search(HS) algorithm traps into local optima easily,and it has low convergence accuracy when used for the optimization of complex functions.In order to overcome these shortcomings,an improved HS algorithm is proposed.Different from the existing HS algorithm,the whole harmony memory is divided into some small sub-harmony memories,and each sub-harmony memory updates information timely.Then the optimal solution of sub-harmony memory constitutes a better harmony memory,which is used for search.The sub-harmony memories are regrouped frequently by using the regrouping strategy,and information is exchanged among the sub-harmony memories.In the final search stage,to have a better local search ability,all the harmonies form a harmony memory.Experiments are conducted on five benchmark functions,and the results show that the proposed HS algorithm has a better optimization performance,as compared with some recent HS variants.
出处 《甘肃科学学报》 2010年第3期40-43,共4页 Journal of Gansu Sciences
基金 国家自然科学基金项目(60674108) 商洛学院科研基金项目(09sky011)
关键词 和声搜索 元启发式算法 智能优化 复杂函数 重组周期 harmony search meta-heuristic algorithm intelligent optimization complex function regrouping period
  • 相关文献

参考文献9

  • 1Geem Z W,Kim J H,Loganathan O V.A New Heuristic Optimization Algorithm:Harmony Search[J].Simulation,2001,76 (2):60-68. 被引量:1
  • 2Kim J H,Geem Z W,Kim E S.Parameter Estimation of the Nonlinear Muskingum Model Using Harmony Search[J].Journal of the American Watex Resources Association,2001,37 (5):1 131-1 138. 被引量:1
  • 3Kang S L,Geem Z W.A New Structural Optimization Method Based on Harmony Search Algorithm[J].Computers and Structures,2004,82(9-10),781-798. 被引量:1
  • 4Geem Z W,Lee K S,Park Y.Application of Harmony Search to Vehicle Routing[J].American Journal of Applied Sciences,2005,2(12):1 552-1 557. 被引量:1
  • 5Lee K S,Geem Z W.A New Meta-heuristic Algorithm for Continuous Engineering Optimization:Harmony Search Theory and Practice[J].Computer Methods in Applied Mechanics and Engineering,2005,194(36-38),3 902-3 933. 被引量:1
  • 6Mahdavi M,Fesanghary M,Damangir E.An Improved Harmony Search Algorithm for Solving Optimization Problems[J].Applied Mathematics and Computation,2007,188 (2),156-157. 被引量:1
  • 7Omran M,Mahdavi M.Global-best Harmony Search[J].Applied Mathematics and Computation,2008,198(2),643-656. 被引量:1
  • 8Liang J J,Suganthan P N.Dynamic Multi-swarm Particle Swarm Optimizer[A].Proceedings of IEEE International Swarm Intelligence Symposium,[C].Messina,Italy,2005:124-129. 被引量:1
  • 9徐俊杰,忻展红.基于两阶段策略的粒子群优化[J].北京邮电大学学报,2007,30(1):136-139. 被引量:7

二级参考文献8

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C]∥Proceedings of IEEE International Conference on Neural Networks.Perth:IEEE Press,1995:1942-1948. 被引量:1
  • 2Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]∥Proceedings of the Sixth International Symposium on Micro Machine and Human Science.Nagoya:IEEE Press,1995:39-43. 被引量:1
  • 3Shi Y,Eberhart R C.A modified particle swarm optimizer[C]∥Proceedings of the IEEE International Conference on Evolutionary Computation.Anchorage:IEEE Press,1998:69-73. 被引量:1
  • 4Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]∥ Proceedings of the 1999 Congress of Evolutionary Computation.Washington:IEEE Press,1999:1951-1957. 被引量:1
  • 5Eberhart R C,Shi Y,Guest editorial:special issue on particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):201-203. 被引量:1
  • 6Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimiser with breeding and subpopulation[C]∥Proceedings of the Genetic and Evolutionary Computation Conference.San Mateo:Morgan Kaufmann Publishers,2001:469-476. 被引量:1
  • 7Eberhart R,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]∥ Proceedings of the 2000 Congress on Evolutionary Computation.La Jolla:IEEE Press,2000:84-88. 被引量:1
  • 8Carlisle A,Dozier G.An off-the-shelf PSO[EB/OL].Indianapolis.2005.http:∥antho.huntingdon.edu/publications/Off-The-Shelf-PSO.pdf. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部