期刊文献+

晶化多晶硅氢等离子钝化处理的优化研究 被引量:3

A Study of Optimization of Hydrogen Plasma Treatment on Poly-Si
下载PDF
导出
摘要 以衬底温度和射频(RF)功率为调控晶化多晶硅薄膜的氢等离子钝化处理工艺的参数,借助发射光谱(OES)全程实时探测以及对氢化处理后薄膜的傅里叶变换红外吸收谱(FTIR)的分析,通过钝化前后薄膜电性能相对照,探讨工艺优化的微观机理。对于LPCVD为晶化前驱物SPC晶化的样品,氢等离子体中的Hβ和Hγ基元对氢钝化处理起主要作用。硅薄膜氢化处理后膜中的氢以Si-H或Si-H2的形态大量增加。随氢化处理的温度升高,促使Hβ和Hγ以更高的动能在表面移动并进入薄膜内与硅悬挂键键合。只有提供足够的动能才能有效改善多晶硅微结构(R降低),使霍尔迁移率得以增大;样品在足够高的衬底温度下,只需较低功率即能产生所需数量的Hβ和Hγ等离子基元对样品予以钝化。降低功率,能有效降低I2100、继而减小R,从而减少对薄膜的轰击和刻蚀,有利提高电学性能。实验中样品氢化处理较优化的条件为550°C,10 W,其霍尔迁移率提高了43.5%。 The microscopic mechanism of the hydrogen passivation was studied by investigating the effect of substrate temperature and RF power on the performance of poly-Si using OES and FTIR. We found that Hβ and Hγ played a major role on hydrogen passivation which used LPCVD as a precursor crystallized by SPC. The intensity of Si-H or Si-H2 in poly-Si increased drastically after passivation. Within a certain temperature range, the higher the substrate temperature was, the more radicals could attach themselves to the dangling bonds, while improving the poly-Si's microstructure parameter (R) and hall mobility. Because affluent hydrogen radicals RF power could be generated to passivate poly-Si even at low power, when the RF power was reduced, I200 and R was lowered and new defects were reduced by bombardment and etching effects, improving the performance. Passivation process is also optimized. The hall mobility is improved by 43.5M at 550℃ 10 W.
出处 《光电子技术》 CAS 北大核心 2010年第3期172-178,共7页 Optoelectronic Technology
关键词 氢钝化处理 多晶硅薄膜 机制 hydrogen plasma treatment poly-Si thin film mechanism
  • 相关文献

参考文献18

  • 1熊绍珍,赵颖,孟志国,孙钟林.低缺陷TFT-LCD研究[J].光电子技术,1996,16(4):321-331. 被引量:2
  • 2Carnel L. Gordon I, Gestel D Van, et al. Thin-film polycrystalline silicon solar cells on ceramic substrates with a V∝ above 500 mV[J].Thin Solid Films, 2006,511:21-25. 被引量:1
  • 3Schropp R E I, Franken R H, Goldbach H D, et al. Hot wire CVD for thin film triple junction cells and for ultrafast deposition of the SiN passivation layer on polycrystalline Si solar cells[J]. Thin Solid Films, 2007,516:496-499. 被引量:1
  • 4罗种 盂志国 王硕 等.溶液法铝诱导晶化制备多晶硅薄膜.物理学报,2006,58:6560-6565. 被引量:1
  • 5Voutsas A T. The role of structural defects and texture variability in the performance of poly-Si thin film transistors[J]. Thin Solid Films, 2007,515:7406-7412. 被引量:1
  • 6Pihan E, Slaoui A, Maurice C. Growth kinetics and crystallographic properties of polysilicon thin films formed by aluminium-induced crystallization [J]. Journal of Crystal Growth, 2007,305:88-98. 被引量:1
  • 7Qin Shu, Zhou Yuanzhong, Nakatsugawa Tomoya, et al. Uptimizing high efficient plasma immersion ion implantation hydrogenation for poty-Si thin film transistors[J]. Nuclear Instruments and Methods in Physics Research B, 1997,124: 69- 75. 被引量:1
  • 8Stefan. K Estreicher. Hydrogen-related defects in crystalline semiconductors: a theorist's perspective[J]. Material Science and Engineering, 1995(R14):319-412. 被引量:1
  • 9Street R A. Hydrogen diffusion and electronic metastability in amorphous silicon[J]. Physica B, 1991,170: 69-74. 被引量:1
  • 10SanjayKRam, SatyendraKumar, Cabarrocas P. Role of microstructure in electronic transport behavior of highly crystallized undopedmicrocrystalline Si films[J]. Thin Solid Films, 2007(19):7469-7474. 被引量:1

二级参考文献2

共引文献1

同被引文献43

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部