摘要
目的设计分散状态反馈控制器和相应的分散切换律,保证一类线性切换关联大系统在平衡点处渐近稳定.方法基于凸组合技术、矩阵不等式,借助Lyapunov函数方法,设计出系统的分散控制器和分散切换律.结果在低维子系统的单个子系统均不能被镇定的情况下,所设计的分散控制器和分散切换律,保证闭环系统渐近稳定.通过一个数值算例和相应的计算机仿真,验证了设计方法的可行性和正确有效性.结论切换大系统可稳的条件能相应转化为求矩阵不等式组的可行解问题.
The study aims to design decentralized state feedback controllers and decentralized switching laws design and guarantee that a class of switched interconnected large-scale linear systems.Based on convex combination technique and matrix inequality approach,by using Lyapunov function,decentralized controllers and decentralized switching laws are designed to guarantee the closed-loop systems be asymptotically stable under the condition that each subsystem of low-dimensional subsystem can not be stabilized.A condition of stabilization for switched large-scale systems is converted to solve feasible problem of matrix inequalities.A numerical example and a computer simulation verify the feasibility and validity of the designed methods.
出处
《沈阳建筑大学学报(自然科学版)》
CAS
北大核心
2010年第5期1017-1020,共4页
Journal of Shenyang Jianzhu University:Natural Science
基金
辽宁省教育厅科研项目(2008Z180)
关键词
大系统
状态反馈
凸组合
矩阵不等式
large-scale systems
state feedback
convex combination
matrix inequality