期刊文献+

一个新的非常规Hermite型矩形元的构造及收敛性分析

The Construction and Convergence Analysis of a New Unconventional Hermite-type Rectangular Element
下载PDF
导出
摘要 二阶椭圆问题是有限元方法中经常研究的问题,利用混合元格式研究该问题经常会遇到.针对二阶椭圆问题构造了一个新的非常规Hermite型矩形单元,在此基础上定义了一个新的插值函数,并构造了一个混合元格式,给出了该格式的收敛性分析. The second elliptic problem often appears in the research of the finite elelment,the form of mixed element is usually studied in this problem.A new unconventional Hermite-type Rectangular Element is constructed for the second elliptic problem.A new Interpolation function and the form of mixed element is definted.At the same time,the convergence analisis is given.
作者 刘付军 卢静
出处 《河南工程学院学报(自然科学版)》 2010年第3期73-76,共4页 Journal of Henan University of Engineering:Natural Science Edition
基金 河南工程学院青年基金(Y09049)
关键词 有限元空间 非常规Hermite型矩形元 插值函数 收敛性 finite element unconventional Hermite-type rectangular element function convergence
  • 相关文献

参考文献10

二级参考文献16

  • 1朱起定 林群.有限元超收敛理论[M].长沙:湖南科学技术出版社,1989.. 被引量:31
  • 2P.G. Ciarlet, The Finite Element Method for Elliptic Problem, North-Holland, Amsterdam,1978. 被引量:1
  • 3S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag New York, Inc, 1998. 被引量:1
  • 4T. Apel, M. Dobrowolski, Anisotropic Interpolation with Application to the Finite Element Method, Computing, 47:3(1992), 277-293. 被引量:1
  • 5A. Zenisek, M. Vanmaele, The interpolation theory for narrow quadrilateral isoparametric finite elements, Numer. Math., 72:1(1995), 123-141. 被引量:1
  • 6T. Apel, G. Lue, Anisotropic mesh refinement in stabilized Galerkin methods, Numer.Math., 74:3(1996), 261-282. 被引量:1
  • 7T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, B.G. Teubner Stuttgart, Leipzig, 1999. 被引量:1
  • 8S.C. Chen, D.Y. Shi and Y.C. Zhao, Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes, IMA. J. Numer. Anal., 24(2004), 77-95. 被引量:1
  • 9O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Internat. J. Numer. Meth. Engrg., 1992, 33, Part 1: 1331-1364, Part 2: 1365-1382. 被引量:1
  • 10M. Zlamal, Some superconvergence results in the finite element method, Lecture Notes in Mathematics 606, Springer-verlag Now York, 1977, 353-362. 被引量:1

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部