摘要
通过构造一个广义正定径向无界的Lyapunov函数和最优化理论,研究了一个新三维类洛伦兹系统的最终有界集和正向不变集,取得了该系统的三维椭球估计和x-z的二维界估计。然后将得到的变量x,y,z的界应用到混沌同步中,设计了一个尽可能简单的线性控制器,并研究了该系统的完全同步。数值仿真试验证明了同步理论的有效性。
The ultimate bound and positively invariant set of a new Lorenz-like system was investigated by constructing a positively definite and radically unbounded Lyapunov function and optimation theory. For this system, the three-dimensional ellipsoidal estimation and two-dimensional estimation about x - z were obtained. Then the upper bound about x, y, z was applied to the chaos synchronization to design a simple linear controller, and its complete synchronization was studied. Numerical simulations were presented to show the effectiveness of the proposed scheme.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2010年第9期83-89,共7页
Journal of Shandong University(Natural Science)
基金
国家自然青年科学基金资助项目(10601071)
重庆市自然科学基金资助项目(2009BB3185)
关键词
最终有界集
正向不变集
混沌同步
数值仿真
ultimate bound
positively invariant set
chaotic synchronization
numerical simulations