期刊文献+

一个新三维类洛伦兹系统的最终有界集和正向不变集及其在同步中的应用 被引量:8

The ultimate bound and positively invariant set of a new Lorenz-like chaotic system and its application in chaos synchronization
原文传递
导出
摘要 通过构造一个广义正定径向无界的Lyapunov函数和最优化理论,研究了一个新三维类洛伦兹系统的最终有界集和正向不变集,取得了该系统的三维椭球估计和x-z的二维界估计。然后将得到的变量x,y,z的界应用到混沌同步中,设计了一个尽可能简单的线性控制器,并研究了该系统的完全同步。数值仿真试验证明了同步理论的有效性。 The ultimate bound and positively invariant set of a new Lorenz-like system was investigated by constructing a positively definite and radically unbounded Lyapunov function and optimation theory. For this system, the three-dimensional ellipsoidal estimation and two-dimensional estimation about x - z were obtained. Then the upper bound about x, y, z was applied to the chaos synchronization to design a simple linear controller, and its complete synchronization was studied. Numerical simulations were presented to show the effectiveness of the proposed scheme.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第9期83-89,共7页 Journal of Shandong University(Natural Science)
基金 国家自然青年科学基金资助项目(10601071) 重庆市自然科学基金资助项目(2009BB3185)
关键词 最终有界集 正向不变集 混沌同步 数值仿真 ultimate bound positively invariant set chaotic synchronization numerical simulations
  • 相关文献

参考文献12

  • 1LI Damei, LU Junan, WU Xiaoqun, et al. Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system[J]. Journal of Mathematical Analysis and Applications, 2006, 323 (2) :844-853. 被引量:1
  • 2QIN Wenxin, CHEN Guanrong. On the boundedness of solutions of the Chen system[J]. Journal of Mathematical Analysis and Applications, 2007, 329 (1):445-451. 被引量:1
  • 3ANTONIN VANEEK, CELIKOVSKY SERGEJ. Control systems: from linear analysis to synthesis of chaos[M]. London: Prentice-Hall, 1996. 被引量:1
  • 4LU J, CHEN G. A new chaotic attractor coined [J]. Intemational Journal of Bifurcation and Chaos, 2002, 12 (3) :659-661. 被引量:1
  • 5LIAO X. On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization[ J]. Sci China Ser E, 2004,34:1404-1419. 被引量:1
  • 6POGROMSKY A YU, SANTOBONI G, NIJMELIER H. An ultimate bound on the trajectories of the Lorenz systems and its applications[ J]. Nonlinearity, 2003, 16 : 1597-1605. 被引量:1
  • 7VLADIMIR A BOICHENKO, GENNADII ALEKSEEVICH LEONOV, VOLKER REITMANN. Dimension theory for ordina- ry differential equations [ M ]. Wiesbaden: Teubner Verlag, 2005. 被引量:1
  • 8SWINNERTON-DYER PETER. Bounds for trajectories of the Lorenz equation : an illustration of how to choose Liapunov functions[J]. Physics Letters A, 2001,281 (2-3) :161-167. 被引量:1
  • 9LIAO Xiaoxin 1, 2, 3 , FU Yuli 4 & XIE Shengli 4 1. Department of Control Science & Control Engineering, Huazhong University of Science & Technology, Wuhan 430074, China,2. School of Automation, Wuhan University of Science & Technology, Wuhan 430070, China,3. School of Information, Central South University of Economy, Politics and Law, Wuhan 430064, China,4. School of Electronics & Information Engineering, South China University of Technology, Guangzhou 510640, China Correspondence should be addressed to Liao Xiaoxin (email: xiaoxin_liao@hotmail.com).On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization[J].Science in China(Series F),2005,48(3):304-321. 被引量:23
  • 10GAO Y, CHAU K T. Design of permanent-magnets to avoid chaos in PM synchronous machines[J]. IEEE Transactions on Magnetics, 2009, 39:2995-2997. 被引量:1

二级参考文献1

共引文献22

同被引文献67

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部