期刊文献+

拟自适应分类随机森林算法 被引量:16

Quasi-Adaptive Random Forest for Classification
原文传递
导出
摘要 本文给出了集成学习模型可以收敛的集成学习算法,拟自适应分类随机森林算法。拟自适应分类随机森林算法综合了Adaboost算法和随机森林算法的优势,实验数据分析表明,训练集较大时,拟自适应随机森林算法的效果会好于随机森林算法。另外,拟自适应分类随机森林算法的收敛性确保它的推广误差可以通过训练集估计,所以,对于实际数据,拟自适应分类随机森林算法不需要把数据划分为训练集和测试集,从而,可以有效的利用数据信息。 For supervised classification,this paper proposes a new ensemble method named quasi-adaptive random forest,and it' ensemble model converge almost surely.Quasi-adaptive random forest combines the merit of Adaboost and random forest,and experiential analysis shows that quasi-adaptive random forest is more successful than random forest in generalized error reduction when the size of data set is comparatively large.Over and above,because of the convergence of quasi-adaptive random forest model,we can use all the mass data as training set,and also estimate generalization error of the ensemble models by it.
出处 《数理统计与管理》 CSSCI 北大核心 2010年第5期805-811,共7页 Journal of Applied Statistics and Management
基金 中财121人才工程青年博士发展基金(QBJ0711) 全国统计科学研究计划项目(2008LY049) 教育部人文社会科学研究项目基金(08JC910003) 中央财经大学学科建设基金资助
关键词 集成学习 拟自适应 随机森林 ensemble learning quasi-adaptive random forest
  • 相关文献

参考文献13

  • 1Breiman L, Friedman J, Olshen R, and Stone C. Classification and Regression Trees [M]. Monterey, CA: Wadsworth and Brooks, 1984. 被引量:1
  • 2Quinlan J R. Bagging, boosting, and C4.5 [A]. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, 725-730 [C]. Cambridge, MA: AAAI Press/MIT Press, Portland, Oregon 1996. 被引量:1
  • 3Ripley B D. Pattern Recognition and Neural Networks [M]. New York: Cambridge University Press, 1996. 被引量:1
  • 4Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32. 被引量:1
  • 5Freund Y and Schapire R E. Experiments with a new boosting algorithm [A]. In: Proc. 13th International Conference on Machine Learning, 148-146 [C]. San Francisco: Morgan Kaufmann, 1996. 被引量:1
  • 6Breiman L. Aring classifiers [J]. The Annals of Statistics, 1998, 26(3): 801-849. 被引量:1
  • 7Schapire R E, Freund Y, Bartlett P, Lee W S. Boosting the margin: a new explanation for the effectiveness of voting methods [J]. The Annals of Statistics, 1998, 26(5): 1651-1686. 被引量:1
  • 8Breiman L. Some infinity theory for predictor ensembles [R]. Technical Report 579, University of California, Department of Statistics, 2000. 被引量:1
  • 9Breiman L. Out-of-bag estimation [R]. Technical report, Dept. of Statistics, Univ. of Calif., Berkeley. ftp://ftp.stat.berkeley.edu/pub/users/breiman/ OOBestimation. ps.Z., 1996. 被引量:1
  • 10Ho T K. Random Decision Forest [A]. In: Proceedings of the Third International Conference on Document Analysis and Recognition, 278-282 [C], Montreal, Canada, 1995. 被引量:1

同被引文献146

引证文献16

二级引证文献195

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部