期刊文献+

采用任意播方式的机会数据聚集算法 被引量:1

Opportunistic Data Aggregation Algorithm Using Any-cast
下载PDF
导出
摘要 数据收集是无线传感网络研究的关键问题,是诸多无线传感网络应用的基础.降低数据聚集的延迟是数据聚集研究中的重点问题.现有的面向延迟的数据聚集算法,多是通过在树型网络结构上设计无冲突的节点调度算法,来降低数据聚集的延迟,没有考虑到无线网络数据易丢失的特性,不能达到期望的延迟效果.本文针对上述问题,提出一种采用任意播(anycast)方式的机会数据收集算法(OA算法).该算法利用机会传输(opportunistic transmission)的思想,用任意播方式传输数据,通过减少数据聚集中重传数据包的数目,来降低数据聚集的延迟.实验表明,与SPT(Shortest path tree)上的数据聚集延迟相比,该方法的发包数目减少了15%,延迟降低了10%. Data Aggregation is a key problem in wireless sensor networks.It has a wild of applications in environment monitoring and scientific observation.In this paper,we focus on shortening the latency of data aggregation.Most of previous works usually schedule nodes on a tree rooted at the sink node by a collision free scheduling.As wireless channel is unstable and message loss always happens,the scheduling on the fixed tree structure cannot achieve a good performance on latency.To overcome this problem,we design an opportunistic data aggregation algorithm using anycast,named OA algorithm.As less packets are transmitted,lower latency is achieved.We validate our algorithm by simulation.Compared with scheduling algorithm on shortest path tree(SPT),the results show that about 15% less messages are transmitted by OA and the latency by OA is 10% lower than that by SPT.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第9期1712-1716,共5页 Journal of Chinese Computer Systems
基金 国家"九七三"重点基础研究发展规划项目(2006CB303006)资助 中科院知识创新工程项目资助 中国博士后基金项目(20080430776)资助 国家博士学科点专项科研基金项目(20070358075)资助
关键词 无线传感网络 数据聚集 机会数据聚集 任意播 wireless sensor networks data aggregation opportunistic data aggregation anycast
  • 相关文献

参考文献12

  • 1Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, et al. Wireless sensor networks: a survey [ J ]. Computer Networks,2002,38(4) :393-422. 被引量:1
  • 2Li Mo, Liu Yun-hao. Underground structure monitoring with wireless sensor networks [ C ]. In Proceedings of ACM/IEEE IPSN 2007, 2007, 69-78. 被引量:1
  • 3Robert Szewczyk, Alan M Mainwaring, Joseph Polastre, et al. An analysis of a large scale habitat monitoring application[ C]. In Proceedings of ACM SenSys 2004, 2004, 214-226. 被引量:1
  • 4Tian He, Sudha Krishnamurthy, John A Stankovic, et al. Energyefficient surveillance system using wireless sensor networks[C]. In Proceedings of ACM MobiSys 2004, 2004, 270-283. 被引量:1
  • 5Samuel Madden, Michael J Franklin, Joseph M Hellerstein, et al. Tag: a tiny aggregation service for ad-hoc sensor networks[J]. In Proceedings of USENIX OSDI, 2002. 被引量:1
  • 6Scott C-H Huang, Peng-Jun Wan, Chinh T Vu, et al. Nearly constant approximation for data aggregation scheduling in wireless sensor networks[ C]. In Proceedings of IEEE INFOCOM 2007, 366- 372. 被引量:1
  • 7Zhigang Chen, Kang G shin. Opag: opportunistic data aggregation in wireless sensor networks[ C]. In Proceedings of RTSS 2008, 345 -354. 被引量:1
  • 8Jeffrey Considlne, Feifei Li, George Kollios, et al. Approximate aggregation techniques for sensor databases[ C]. In Proceedings of ICDE 2004, 449-460. 被引量:1
  • 9Suman Nath, Phillip B Gibbons, Srinivasan Scshan, et al. Synopsis diffusion for robust aggregation in sensor networks[ C]. In Proceedings of ACM SenSys 2004, 250-262. 被引量:1
  • 10Amit Manjhi, Suman Nath, Phillip B Gibbons. Tributaries and deltas: efficient and robust aggregation in sensor network streams [C]. In Proceedings of SIGMOD 2005, 287-298. 被引量:1

同被引文献1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部