期刊文献+

一种运动检测算法研究 被引量:6

Studies of motion detection algorithms
下载PDF
导出
摘要 混合高斯背景模型算法被广泛地运用于运动检测中,但是该算法在一些复杂的室外场景下未能有效地反映背景,容易出现误检测。为此提出一种改进的算法,该算法在更新背景模型时对不同的区域采用不同的更新速率,并在进行前景检测时加入一种阈值判断,最后对检测结果进行去噪处理。实验结果表明,改进后的算法能够更好地处理多模态区域,减少前景检测中出现的空洞,避免由于方差过度收敛引起的误检测,从而更精确地实现运动目标分割。 The Gaussian mixture background algorithm has been used in motion detection widely,but it can’t effectively reflect the background in some complex outdoor situations and may bring the false detection problem easily. This paper proposed an improved algorithm. This algorithm used different update rates for the different regions when updated the background model,and added a threshhold is added in the process of foreground detection. Finally,done a denosing process for the detection results. The experimental result shows that the proposed algorithm can deal with the multi-modal regions more effectively,reduce the detection hole and avoid false detection which is caused by the excessive convergence of the variance,thereby achieving more accurate moving object segmentation.
作者 罗铁镇 徐成
出处 《计算机应用研究》 CSCD 北大核心 2010年第9期3561-3563,3566,共4页 Application Research of Computers
基金 国家“863”计划资助项目(2007AA01Z104) 国家自然科学基金资助项目(60973030)
关键词 智能视频监控 运动检测 混合高斯模型 更新速率 多模态 intelligent video surveillance motion detection mixture gaussian model update rates multi-modal
  • 相关文献

参考文献5

  • 1PAPENBERG N,BRUHN A,BROX T,et al.Highly accurate optic flow computation with theoretically justified warping[J].International Journal of Computer Vision,2006,67(2):141-158. 被引量:1
  • 2MADDALENA L,PETROSINO A.A self-organizing approach to background subtraction for visual surveillance applications[J].IEEE Trans on Image Processing,2008,17(7):1168-1177. 被引量:1
  • 3郑锦,李波.视频序列中运动对象检测技术的研究现状与展望[J].计算机应用研究,2008,25(12):3534-3540. 被引量:10
  • 4STAUFFER C,GRIMASON W E L.Adaptive background mixture models for real-time tracking[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Computer Society,1999:246-252. 被引量:1
  • 5KAEW TRAKULPONG P,BOWDEN R.An improved adaptive background mixture model for real-time tracking with shadow detection[C]//Proc of the 2nd European Workshop on Advanced Video Based Surveillance Systems.2001:149-158. 被引量:1

二级参考文献49

  • 1张忠伟,刘贵忠,李宏亮,李永利.基于能流信息的视频分割[J].电子学报,2005,33(1):177-180. 被引量:2
  • 2刘震,赵杰煜.基于混合概率背景模型的视频分割方法[J].计算机应用,2005,25(7):1616-1619. 被引量:1
  • 3ELGAMMAL A, DURAISWAMI R, DAVIS L. Efficient non-parametric adaptive color modeling using fast Gauss transform [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001 : 563- 570. 被引量:1
  • 4TOYAMA K, KRUMM J, BRUMITT J, et al. Wallflower: principles and practice of background maintenance [ C ] HProc of the 7th IEEE International Conference on Computer Vision. 1999:255-261. 被引量:1
  • 5OLIVER N M, ROSARIO B, PENTLAND A P. A Bayesian computer vision system for modeling human interactions [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : 831- 843. 被引量:1
  • 6CUCCHIARA R, GRANA C, PICCARDI M, et al. Detecting moving objects, ghosts, and shadows in video streams[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25 (10) : 1337- 1342. 被引量:1
  • 7ZHENG Jin, LI Bo, YAO Chuan-lian, Robust abnormity detecting and tracking using correlation coefficient[ C]//Proc of the 12th International Multi-Media Modeling Conference. 2006:72-79. 被引量:1
  • 8NERI A, COLONNESE S, RUSSO G, etal. Automatic moving object and background separation [ J ]. Signal Processing, 1998,66 ( 2 ) : 219-232. 被引量:1
  • 9ROGERS S K, COLOMBI J M, MARTIN C E, et al. Neural network for automatic target recognition [ J ]. Neural Networks, 1995,8 ( 7/ 8) :1153-1184. 被引量:1
  • 10LECLERC Y G, LUONG Q T, FUA P V, et al. Detecting change in 3D shape using self-consistency [ C]//Proc of IEEE Conference on Computer Vision and pattern Recognition. 2000:395-402. 被引量:1

共引文献9

同被引文献36

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2马桂珍,朱玲赞,段丽.基于OpenCV的视频应用程序的开发方法[J].现代电子技术,2007,30(4):78-79. 被引量:15
  • 3MEIER T, NGUN K N. Video segmentation for cintent-based coding [J]. IEEE Trans on Circuits and Systems for Video Technolo- gy, 1999,9 ( 9 ) : 1190-1203. 被引量:1
  • 4PAPENBERG N, BKUHN A, BROX T, et al, Highly accurate optic flow computation with theoretically justified warping[ J ]. Internatio- nal Journal of Computer Vision ,2006,67(2 ) : 141 - 158. 被引量:1
  • 5ELGAMMAL A, HARWOOD D, DAVIS L. Nonparametric model for background subtraction[ C]//Proc of European Conference on Com- puter Vision. 2000:751-767. 被引量:1
  • 6STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking[J]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence, 2000,22 ( 8 ) : 747 - 757. 被引量:1
  • 7ZIVKOVIC Z. Improved adaptive Gaussian mixture model for back-ground subtraction[ G]llProc of the 17th International Conference on Pattern Recognition. Cambridge : IEEE Press,2004:28-31. 被引量:1
  • 8SUBRAMANIAM K, DALY S S, RIND F C. Wavelet transforms for use in motion detection and tracking application[ C]//Proc of the 7th International Conference on Image Processing and Its Applications. 2007:711-715. 被引量:1
  • 9POWER P W, SCHOONEES J A. Understanding background mixture models for foregrounds segmentation [ C ]//Proc of Image and Vision Computing Conference. 2002:267-271. 被引量:1
  • 10文灏,陈红涛.基于减背景与对称差分的运动目标检测[J].微计算机信息,2007(25):99-101. 被引量:14

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部