期刊文献+

基于改进的PSO算法的神经网络相关性剪枝优化 被引量:3

Neural network correlation pruning optimization based on improved PSO algorithm
下载PDF
导出
摘要 针对传统的神经网络训练算法收敛速度慢、易陷入局部最优的问题,提出了一种基于改进的分期变异微粒群优化算法(SMPSO)的神经网络相关性剪枝优化方法。SMPSO在初期使适应度过低的微粒发生变异,在后期使停滞代数过高的个体极值和全局极值发生变异,后将SMPSO用于优化神经网络相关性剪枝算法。实验结果表明,该方法与采用BP算法及标准PSO算法进行相关性剪枝相比,在训练收敛速度、剪枝效率及分类正确率三方面都有较大提高。 The traditional neural network training algorithm converges slowly and is easy to fall into local optimum. In response to these shortcomings,this paper proposed a neural network correlation pruning method optimized with improved staging mutation particle swarm optimization algorithm ( SMPSO) . SMPSO mutate particles that had too low fitness at early stage and mutate individual extreme and global extreme that stagnate in excessive iteration latterly. Then used SMPSO to optimize neural network correlation pruning algorithm. The experiment results show that neural network correlation pruning method optimized by SMPSO is more efficient than that optimized by BP and standard PSO. It has greater improvement in the convergence velocity of training,the efficiency of pruning and the accuracy of classification.
出处 《计算机应用研究》 CSCD 北大核心 2010年第9期3253-3255,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60702056)
关键词 神经网络 剪枝 微粒群优化算法 neural network pruning particle swarm optimization algorithm
  • 相关文献

参考文献12

  • 1ISLAM M M,SATTAR M A,AMIN M F,et al.A new adaptive merging and growing algorithm for designing artificial neural networks[J].IEEE Trans on System,Man,and Cybernetics-Part B:Cybernetics,2009,39(3):705-722. 被引量:1
  • 2CASTELLANO G,FANELLI A M,PELILLO M.An interative pruning algorithm for feedforward neural networks[J].IEEE Trans on Neural Networks,1997,8(3):519-531. 被引量:1
  • 3EENGELLBRECHT A P.A new pruning heuristic based on variance analysis of sensitivity information[J].IEEE Trans on Neural Network,2001,12(6):1386-1399. 被引量:1
  • 4RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(11):533-536. 被引量:1
  • 5SEXTON R S,DORSEY R E.Reliable classification using neural networks:a genetic algorithm and backpropagation comparison[J].Decision Support Systems,2000,30(1):11-22. 被引量:1
  • 6曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 7高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 8KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks.1995:1942-1948. 被引量:1
  • 9赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 10LAURET P,FOCK E,MARA T A.A node pruning algorithm based on a Fourier amplitude sensitivity test method[J].IEEE Trans on Neural Network,2006,17(2):273-293. 被引量:1

二级参考文献19

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962 被引量:1
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944 被引量:1
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73 被引量:1
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30 被引量:1
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001 被引量:1
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001) 被引量:1
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975 被引量:1
  • 8Bergh F.,Engelbrecht A.P..Training product unit networks using cooperative particle swarm optimizers.In:Proceedings of International Joint Conference on Neural Networks,Washington,2001,1:126~131 被引量:1
  • 9Yoshida H.,Kawata K.,Yoshikazu F..A Particle swarm optimization for reactive power and voltage control considering voltage security assessment.IEEE Transactions on Power System,2000,15(4):1232~1239 被引量:1
  • 10Gao L.,Gao H.B..Particle swarm optimization based algorithm for cutting parameters selection.In:Proceedings of IEEE World Congress on Intelligent Control and Automation,Hangzhou,2004,4 :2847~ 2851 被引量:1

共引文献379

同被引文献46

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部